ﻻ يوجد ملخص باللغة العربية
Geoneutrinos are electron antineutrinos ($bar u_e$) generated by the beta-decays of radionuclides naturally occurring inside the Earth, in particular $^{238}$U, $^{232}$Th, and $^{40}$K. Measurement of these neutrinos provides powerful constraints on the radiogenic heat of the Earth and tests on the Earth models. Since the prediction of $bar u_e$s in geoneutrino flux is subject to neutrino oscillation effects, we performed a calculation including detailed oscillation analysis in the propagation of geoneutrinos and reactor neutrinos generated around the Earth. The expected geoneutrino signal, the reactor neutrino background rates and the systematic error budget are provided for a proposed 3-kiloton neutrino detector at the Jinping underground lab in Sichuan, China. In addition, we evaluated sensitivities for the geoneutrino flux, Th/U ratio and power of a possible fission reactor in the interior of Earth.
Geo-neutrinos, electron antineutrinos from natural radioactive decays inside the Earth, bring to the surface unique information about our planet. The new techniques in neutrino detection opened a door into a completely new inter-disciplinary field of
We report the results of searches for solar axions and galactic dark matter axions or axion-like particles with CDEX-1 experiment at the China Jinping Underground Laboratory, using 335.6 kg-days of data from a p-type point-contact germanium detector.
We present results on light weakly interacting massive particle (WIMP) searches with annual modulation (AM) analysis on data from a 1-kg mass $p$-type point-contact germanium detector of the CDEX-1B experiment at the China Jinping Underground Laborat
We report constraints on the dark photon effective kinetic mixing parameter (${kappa}$) with data taken from two ${p}$-type point-contact germanium detectors of the CDEX-10 experiment at the China Jinping Underground Laboratory. The 90% confidence le
The China Dark Matter Experiment reports results on light WIMP dark matter searches at the China Jinping Underground Laboratory with a germanium detector array with a total mass of 20 g. The physics threshold achieved is 177 eVee (ee represents elect