ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic phenomena in a fiber Raman amplifier

108   0   0.0 ( 0 )
 نشر من قبل Vladimir Kalashnikov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay of such cornerstones of modern nonlinear fiber optics as a nonlinearity, stochasticity and polarization leads to variety of the noise induced instabilities including polarization attraction and escape phenomena harnessing of which is a key to unlocking the fiber optic systems specifications required in high resolution spectroscopy, metrology, biomedicine and telecommunications. Here, by using direct stochastic modeling, the mapping of interplay of the Raman scattering-based nonlinearity, the random birefringence of a fiber, and the pump-to-signal intensity noise transfer has been done in terms of the fiber Raman amplifier parameters, namely polarization mode dispersion, the relative intensity noise of the pump laser, fiber length, and the signal power. The obtained results reveal conditions for emergence of the random birefringence-induced resonance-like enhancement of the gain fluctuations (stochastic anti-resonance) accompanied by pulse broadening and rare events in the form of low power output signals having probability heavily deviated from the Gaussian distribution.

قيم البحث

اقرأ أيضاً

We describe a fiber Raman amplifier for nanosecond and sub-nanosecond pulses centered around 1260 nm. The amplification takes place inside a 4.5-m-long polarization-maintaining phosphorus-doped fiber, pumped at 1080 nm by 3-ns-long pulses with a repe tition rate of 200 kHz and up to 1.75 kW peak power. The input seed pulses are of sub-mW peak-power and minimal duration of 0.25 ns, carved off a continuous-wave laser with sub-MHz linewidth. We obtain linearly-polarized output pulses with peak-powers of up to 1.4 kW, corresponding to peak-power conversion efficiency of over 80%. An ultrahigh small-signal-gain of 90 dB is achieved, and the signal-to-noise ratio 3 dB below the saturation power is above 20 dB. No significant temporal and spectral broadening is observed for output pulses up to 400 W peak power, and broadening at higher powers can be reduced by phase modulation of the seed pulse. Thus nearly-transform-limited pulses with peak power up to 1 kW are obtained. Finally, we demonstrate the generation of pulses with controllable frequency chirp, pulses with variable width, and double pulses. This amplifier is thus suitable for coherent control of narrow atomic resonances and especially for the fast and coherent excitation of rubidium atoms to Rydberg states. These abilities open the way towards several important applications in quantum non-linear optics.
115 - B. A. Cumberland 2007
We report on 33 % efficient generation of the first Stokes in a high concentration GeO2 fiber Raman laser pumped by a 22 W Thulium doped fiber laser. An output power of 4.6 W at 2.105 um is demonstrated.
We report on the design and whole characterization of low-noise and affordable-cost Yb-doped double-clad fiber amplifiers operating at room temperature in the near-infrared spectral region at pulse repetition rate of 160 MHz. Two different experiment al configurations are discussed. In the first one, a broadband seed radiation with a transform limited pulse duration of 71 fs, an optical spectrum of 20 nm wide at around 1040 nm, and 20 mW average power is adopted. In the second configuration, the seed radiation is constituted by stretched pulses with a time duration as long as 170 ps, with a 5-nm narrow pulse spectrum centered at 1029 nm and 2 mW average input power. In both cases we obtained transform limited pulse trains with an amplified output power exceeding 2 W. Furthermore, relative intensity noise measurements show that no significant noise degradation occurs during the amplification process.
Fiber lasers operating via Raman gain or based on rare-earth doped active fibers are widely used as sources of CW radiation. However these lasers are only quasi-CW: their intensity fluctuates strongly on short time-scales. Here the framework of the c omplex Ginzburg-Landau equations, that are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers as well. The first ever vector model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers.
In long-haul optical continuous-wave frequency transfer via fiber, remote bidirectional Er$^+$-doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement we find an instability of the frequency transfer (Allan deviation of $Lambda$-weighted data with 1 s gate time) of around $1times10^{-19}$ and less for averaging times longer than 3000 s. The modified Allan deviation reaches $3times10^{-19}$ at an averaging time of 100 s, corresponding to the current noise floor at this averaging time. For averaging times longer than 1000 s the modified Allan deviation is in the $10^{-20}$ range. A conservative value of the overall accuracy is $1times10^{-19}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا