ﻻ يوجد ملخص باللغة العربية
In long-haul optical continuous-wave frequency transfer via fiber, remote bidirectional Er$^+$-doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement we find an instability of the frequency transfer (Allan deviation of $Lambda$-weighted data with 1 s gate time) of around $1times10^{-19}$ and less for averaging times longer than 3000 s. The modified Allan deviation reaches $3times10^{-19}$ at an averaging time of 100 s, corresponding to the current noise floor at this averaging time. For averaging times longer than 1000 s the modified Allan deviation is in the $10^{-20}$ range. A conservative value of the overall accuracy is $1times10^{-19}$.
We demonstrate the long-distance transmission of an ultra-stable optical frequency derived directly from a state-of-the-art optical frequency standard. Using an active stabilization system we deliver the frequency via a 146 km long underground fiber
To significantly improve the frequency references used in radio-astronomy and precision measurements in atomic physics, we provide frequency dissemination through a 642 km coherent optical fiber link, that will be also part of a forthcoming European
We have explored the performance of two dark fibers of a commercial telecommunication fiber link for a remote comparison of optical clocks. The two fibers, linking the Leibniz University of Hanover (LUH) with the Physi-kalisch-Technische Bundesanstal
We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the
We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fib