ترغب بنشر مسار تعليمي؟ اضغط هنا

Faraday Conversion in Turbulent Blazar Jets

90   0   0.0 ( 0 )
 نشر من قبل Nicholas MacDonald Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low ($lesssim 1%$) levels of circular polarization (CP) detected at radio frequencies in the relativistic jets of some blazars can provide insight into the underlying nature of the jet plasma. CP can be produced through linear birefringence, in which initially linearly polarized emission produced in one region of the jet is altered by Faraday rotation as it propagates through other regions of the jet with varying magnetic field orientation. Marscher has begun a study of jets with such magnetic geometries using the Turbulent Extreme Multi-Zone (TEMZ) model, in which turbulent plasma crossing a standing shock in the jet is represented by a collection of thousands of individual plasma cells, each with distinct magnetic field orientations. Here we develop a radiative transfer scheme that allows the numerical TEMZ code to produce simulated images of the time-dependent linearly and circularly polarized intensity at different radio frequencies. In this initial study, we produce synthetic polarized emission maps that highlight the linear and circular polarization expected within the model.

قيم البحث

اقرأ أيضاً

56 - Prasad Subramanian 2015
The concept of highly relativistic electrons confined to blobs that are moving out with modestly relativistic speeds is often invoked to explain high energy blazar observations. The important parameters in this model such as the bulk Lorentz factor o f the blob ($Gamma$), the random Lorentz factor of the electrons ($gamma$) and the blob size are typically observationally constrained, but its not clear how and why the energetic electrons are held together as a blob. Here we present some preliminary ideas based on scenarios for cosmic ray electron self-confinement that could lead to a coherent picture.
In this paper we propose a way to use optical polarisation observations to provide independent constraints and guide to the modelling of the spectral energy distribution (SED) of blazars, which is particularly useful when two-zone models are required to fit the observed SED. As an example, we apply the method to the 2008 multiwavelength campaign of PKS 2155-304, for which the required polarisation information was already available. We find this approach succesful in being able to simultaneously describe the SED and variability of the source, otherwise difficult to interpret. More generally, by using polarisation data to disentangle different active regions within the source, the method reveals otherwise unseen correlations in the multiwavelength behaviour which are key for the SED modelling.
57 - H. K. Vedantham , V. Ravi 2018
The extreme, time-variable Faraday rotation observed in the repeating fast radio burst (FRB) 121102 and its associated persistent synchrotron source demonstrates that some FRBs originate in dense, dynamic and possibly relativistic magneto-ionic envir onments. Here we show that besides rotation of the linear-polarisation vector (Faraday rotation), such media can generally convert linear to circular polarisation (Faraday conversion). We use non-detection of Faraday conversion, and the temporal variation in Faraday rotation and dispersion in bursts from FRB,121102 to constrain models where the progenitor inflates a relativistic nebula (persistent source) confined by a cold dense medium (e.g. supernova ejecta). We find that the persistent synchrotron source, if composed of an electron-proton plasma, must be an admixture of relativistic and non-relativistic (Lorentz factor $gamma<5$) electrons. Furthermore we independently constrain the magnetic field in the cold confining medium, which provides the Faraday rotation, to be between $10$ and $30,$mG. This value is close to the equipartition magnetic field of the confined persistent source implying a self-consistent and over-constrained model that can explain the observations.
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic re connection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma_mean ~ Gamma_j <~ 20 (where Gamma_j is the jet bulk Lorentz factor). I propose that the systematic dependence of gamma_max on blazar luminosity class -- the blazar sequence -- may result from a systematic trend in sigma_max due to homogeneous loading of leptons by pair creation regulated by the energy density of high-energy external radiation fields. At the same time, relativistic AGN jets should be highly inhomogeneous due to filamentary loading of protons, which should determine the value of sigma_mean roughly independently of the blazar class.
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-posi tron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا