ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic definition of spin structure

62   0   0.0 ( 0 )
 نشر من قبل Dmitri Vassiliev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We work on a parallelizable time-orientable Lorentzian 4-manifold and prove that in this case the notion of spin structure can be equivalently defined in a purely analytic fashion. Our analytic definition relies on the use of the concept of a non-degenerate two-by-two formally self-adjoint first order linear differential operator and gauge transformations of such operators. We also give an analytic definition of spin structure for the 3-dimensional Riemannian case.



قيم البحث

اقرأ أيضاً

A systematic study of (smooth, strong) cone structures $C$ and Lorentz-Finsler metrics $L$ is carried out. As a link between both notions, cone triples $(Omega,T, F)$, where $Omega$ (resp. $T$) is a 1-form (resp. vector field) with $Omega(T)equiv 1$ and $F$, a Finsler metric on $ker (Omega)$, are introduced. Explicit descriptions of all the Finsler spacetimes are given, paying special attention to stationary and static ones, as well as to issues related to differentiability. In particular, cone structures $C$ are bijectively associated with classes of anisotropically conformal metrics $L$, and the notion of {em cone geodesic} is introduced consistently with both structures. As a non-relativistic application, the {em time-dependent} Zermelo navigation problem is posed rigorously, and its general solution is provided.
We focus on the Penroses Weyl Curvature Hypothesis in a general framework encompassing many specific models discussed in literature. We introduce a candidate density for the Weyl entropy in pure spacetime perfect fluid regions and show that it is mon otonically increasing in time under very general assumptions. Then we consider the behavior of the Weyl entropy of compact regions, which is shown to be monotone in time as well under suitable hypotheses, and also maximal in correspondence with vacuum static metrics. The minimal entropy case is discussed too.
87 - E. Minguzzi 2017
In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid in globally hyperbolic Lorentzian spacetimes.
The null distance of Sormani and Vega encodes the manifold topology as well as the causality structure of a (smooth) spacetime. We extend this concept to Lorentzian length spaces, the analog of (metric) length spaces, which generalize Lorentzian caus ality theory beyond the manifold level. We then study Gromov-Hausdorff convergence based on the null distance in warped product Lorentzian length spaces and prove first results on its compatibility with synthetic curvature bounds.
This chapter is an up-to-date account of results on globally hyperbolic spacetimes, and serves several purposes. We begin with the exposition of results from a foundational level, where the main tools are order theory and general topology, we continu e with results of a more geometric nature, and we conclude with results that are related to current research in theoretical physics. In each case, we list a number of open questions and formulate, for a class of spacetimes, an interesting connection between global hyperbolicity of a manifold and the geodesic completeness of its corresponding space-like surfaces. This connection is substantial for the proof of essential self-adjointness of a class of pseudo differential operators, that stem from relativistic quantum field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا