ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantized Electric Multipole Insulators

193   0   0.0 ( 0 )
 نشر من قبل Wladimir A. Benalcazar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we extend the celebrated Berry-phase formulation of electric polarization in crystals to higher electric multipole moments. We determine the necessary conditions under which, and minimal models in which, the quadrupole and octupole moments are topologically quantized electromagnetic observables. Such systems exhibit gapped boundaries that are themselves lower-dimensional topological phases. Furthermore, they manifest topologically protected corner states carrying fractional charge, i.e., fractionalization at the boundary of the boundary. To characterize these new insulating phases of matter, we introduce a new paradigm whereby `nested Wilson loops give rise to a large number of new topological invariants that have been previously overlooked. We propose three realistic experimental implementations of this new topological behavior that can be immediately tested.

قيم البحث

اقرأ أيضاً

We extend the theory of dipole moments in crystalline insulators to higher multipole moments. In this paper, we expand in great detail the theory presented in Ref. 1, and extend it to cover associated topological pumping phenomena, and a novel class of 3D insulator with chiral hinge states. In quantum-mechanical crystalline insulators, higher multipole bulk moments manifest themselves by the presence of boundary-localized moments of lower dimension, in exact correspondence with the electromagnetic theory of classical continuous dielectrics. In the presence of certain symmetries, these moments are quantized, and their boundary signatures are fractionalized. These multipole moments then correspond to new SPT phases. The topological structure of these phases is described by nested Wilson loops, which reflect the bulk-boundary correspondence in a way that makes evident a hierarchical classification of the multipole moments. Just as a varying dipole generates charge pumping, a varying quadrupole generates dipole pumping, and a varying octupole generates quadrupole pumping. For non-trivial adiabatic cycles, the transport of these moments is quantized. An analysis of these interconnected phenomena leads to the conclusion that a new kind of Chern-type insulator exists, which has chiral, hinge-localized modes in 3D. We provide the minimal models for the quantized multipole moments, the non-trivial pumping processes and the hinge Chern insulator, and describe the topological invariants that protect them.
The quantum mechanical position operators, and their products, are not well-defined in systems obeying periodic boundary conditions. Here we extend the work of Resta who developed a formalism to calculate the electronic polarization as an expectation value of a many-body operator, to include higher multipole moments, e.g., quadrupole and octupole. We define $n$-th order multipole operators whose expectation values can be used to calculate the $n$-th multipole moment when all of the lower moments are vanishing (modulo a quantum). We show that changes in our operators are tied to flows of $n-1$-st multipole currents, and encode the adiabatic evolution of the system in the presence of an $n-1$-st gradient of the electric field. Finally, we test our operators on a set of tightbinding models to show that they correctly determine the phase diagrams of topological quadrupole and octupole models, capture an adiabatic quadrupole pump, and distinguish a bulk quadrupole moment from other mechanisms that generate corner charges.
We study three dimensional insulators with inversion symmetry, in which other point group symmetries, such as time reversal, are generically absent. Their band topology is found to be classified by the parities of occupied states at time reversal inv ariant momenta (TRIM parities), and by three Chern numbers. The TRIM parities of any insulator must satisfy a constraint: their product must be +1. The TRIM parities also constrain the Chern numbers modulo two. When the Chern numbers vanish, a magneto-electric response parameterized by theta is defined and is quantized to theta= 0, 2pi. Its value is entirely determined by the TRIM parities. These results may be useful in the search for magnetic topological insulators with large theta. A classification of inversion symmetric insulators is also given for general dimensions. An alternate geometrical derivation of our results is obtained by using the entanglement spectrum of the ground state wave-function.
We study the topological magnetoelectric effect on a conical topological insulator when a point charge $q$ is near the cone apex. The Hall current induced on the cone surface and the image charge configuration are determined. We also study a kind of gravitational Aharonov-Bohm effect in this geometry and realize a phase diference betwen the components of the wavefunctions (spinors) upon closed parallel transport around the (singular) cone tip. Concretely, a net current flowing towards cone apex (or botton) shows up, yielding electric polarization of the conical topological insulator. Such an effect may be detected, for instance, by means of the net accumulated Hall charge near the apex. Once it depends only on the geometry of the material (essetially, the cone apperture angle) this may be faced as a microscopic scale realization of (2+1)-dimensional Einstein gravity.
We present a systematic study of the nonequilibrium steady states (NESS) in Mott insulators driven by DC or AC electric fields, based on the Floquet dynamical mean-field theory. The results are analyzed using a generalized tunneling formula for the c urrent, which is reminiscent of the Meir-Wingreen formula and provides insights into the relevant physical processes. In the DC case, the spectrum of the NESSs exhibits Wannier-Stark (WS) states associated with the lower and upper Hubbard bands. In addition, there emerge WS sidebands from many-body states. Using the tunneling formula, we demonstrate that the tunneling between these WS states leads to peaks or humps in the induced DC current. In the AC case, we cover a wide parameter range of excitation frequencies and field strengths to clarify the crossover from field-induced tunneling behavior in the DC limit to nonequilibrium states dominated by multiphoton absorption in the AC limit. In the crossover regime, the single-particle spectrum is characterized by a coexistence of Floquet sidebands and WS peaks, and the current and double occupation exhibits a nontrivial dependence on the field strength. The tunneling formula works quantitatively well even in the AC case, and we use it to discuss the potential cooperation of tunneling and multi-photon processes in the crossover regime. The tunneling formula and its simplifi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا