ﻻ يوجد ملخص باللغة العربية
The (111) surface of Cu, Ag and Au is characterized by a band of surface Shockley states, with constant density of states beginning slightly below the Fermi energy. These states as well as bulk states hybridize with magnetic impurities which can be placed above the surface. We calculate the characteristic low-temperature energy scale, the Kondo temperature $T_K$ of the impurity Anderson model, as the bottom of the conduction band $D_s$ crosses the Fermi energy $epsilon_F$. We find simple power laws $T_K simeq |D_s-epsilon_F|^{eta}$, where $eta$ depends on the sign of $D_s-epsilon_F$, the ratio between surface and bulk hybridizations with the impurity $Delta_s/Delta_b$ and the ratio between on-site and Coulomb energy $E_d/U$ in the model.
We study the role of the onset of Shockley states, $D_s$, belonging to (111) surfaces of Cu, Ag and Au in the Kondo effect when a magnetic impurity is deposited on them. When $D_s$ approaches to the Fermi level, $E_F$, thing that can be done by compr
SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly discovered surface state, proposed to be of non-trivial topological origin. However, the surface state dominates electrical conduction only below T* ~ 4 K limiting its scientifi
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a cro
We investigate the possibility to control dynamically the interactions between repulsively bound pairs of fermions (doublons) in correlated systems with off-resonant ac fields. We introduce an effective Hamiltonian that describes the physics of doubl
We investigate the behavior of the spectral weight near the Fermi level of NdNiO3 thin films as a function of temperature across the metal-to-insulator transition (MIT) by means of ultraviolet photoelectron spectroscopy. The spectral weight was found