ﻻ يوجد ملخص باللغة العربية
Low-temperature ($T$) thermodynamic properties in magnetic fields ($B$) of the quasi-Kagome antiferromagnet CePdAl ($T_{rm N}sim$ 2.7 K) were studied by means of magnetization and specific-heat $C(T,B)$ measurements. The unusual magnetic phase diagram, including three thermodynamic phases I-III, and crossover anomalies, has been obtained. In low-field phase I, the existence of the partial Kondo screening state on the one-third Ce sites is supported from the thermodynamic point of view: (i) an appearance of the paramagnetic moment with one-third of the full moment around 3 T, and (ii) an occurrence of the entropy release $sim$0.3$R$ln2 around the observed crossover. On the other hand, a strong enhancement of $C/T$ is found around the point, where $T_{rm N}(B)$ meets the boundary of phase III, indicating the possible presence of a tri-critical point. Furthermore, it is suggested that the three metamagnetic transitions at $B_{{rm m}i}$ ($i=$1,2,3) come from successive increments of the Ising-type magnetic moment along the $c$-axis. In high-field state above 20 T, the behavior of $f$ electron can be rather described by the crystal-electric-field model.
We have employed a magnetic field angle as a tuning parameter in a comprehensive measurement of the specific heat, magnetocaloric effect, and magnetization for the quasi-kagome Kondo lattice CeRhSn, which is considered to exhibit zero-field quantum c
The kagome lattice is a fruitful source of novel physical states of matter, including the quantum spin liquid and Dirac fermions. Here we report a structural, thermodynamic, and transport study of the two-dimensional kagome metal-organic frameworks N
The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic (AF) short-range couplings and long-range intercluster disordered interactions.
Quantum spin liquids (QSLs) are an exotic state of matter that is subject to extensive research. However, the relationship between the ubiquitous disorder and the QSL behaviors is still unclear. Here, by performing comparative experimental studies on
We report that nonmagnetic heavy-fermion (HF) iron oxypnictide CeFePO with two-dimensional XY-type anisotropy shows a metamagnetic behavior at the metamagnetic field H_M simeq 4 T perpendicular to the c-axis and that a critical behavior is observed a