ﻻ يوجد ملخص باللغة العربية
The Team-maxmin equilibrium prescribes the optimal strategies for a team of rational players sharing the same goal and without the capability of correlating their strategies in strategic games against an adversary. This solution concept can capture situations in which an agent controls multiple resources-corresponding to the team members-that cannot communicate. It is known that such equilibrium always exists and it is unique (unless degeneracy) and these properties make it a credible solution concept to be used in real-world applications, especially in security scenarios. Nevertheless, to the best of our knowledge, the Team-maxmin equilibrium is almost completely unexplored in the literature. In this paper, we investigate bounds of (in)efficiency of the Team-maxmin equilibrium w.r.t. the Nash equilibria and w.r.t. the Maxmin equilibrium when the team members can play correlated strategies. Furthermore, we study a number of algorithms to find and/or approximate an equilibrium, discussing their theoretical guarantees and evaluating their performance by using a standard testbed of game instances.
We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define
A dominant approach to solving large imperfect-information games is Counterfactural Regret Minimization (CFR). In CFR, many regret minimization problems are combined to solve the game. For very large games, abstraction is typically needed to render C
We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for bundles of items. For this model, we give several general imposs
Prior AI breakthroughs in complex games have focused on either the purely adversarial or purely cooperative settings. In contrast, Diplomacy is a game of shifting alliances that involves both cooperation and competition. For this reason, Diplomacy ha
We consider shared workspace scenarios with humans and robots acting to achieve independent goals, termed as parallel play. We model these as general-sum games and construct a framework that utilizes the Nash equilibrium solution concept to consider