ﻻ يوجد ملخص باللغة العربية
The JAXA Hayabusa-2 mission was approved in 2010 and launched on December 3, 2014. The spacecraft will arrive at the near-Earth asteroid 162173 Ryugu in 2018 where it will perform a survey, land and obtain surface material, then depart in Dec 2019 and return to Earth in Dec 2020. We observed Ryugu with the Herschel Space Observatory in Apr 2012 at far-IR thermal wavelengths, supported by several ground-based observations to obtain optical lightcurves. We reanalysed previously published Subaru-COMICS and AKARI-IRC observations and merged them with a Spitzer-IRS data set. In addition, we used a large set of Spitzer-IRAC observations obtained in the period Jan to May, 2013. The data set includes two complete rotational lightcurves and a series of ten point-and-shoot observations. The almost spherical shape of the target together with the insufficient lightcurve quality forced us to combine radiometric and lightcurve inversion techniques in different ways to find the objects key physical and thermal parameters. We find that the solution which best matches our data sets leads to this C class asteroid having a retrograde rotation with a spin-axis orientation of (lambda = 310-340 deg; beta = -40+/-15 deg) in ecliptic coordinates, an effective diameter (of an equal-volume sphere) of 850 to 880 m, a geometric albedo of 0.044 to 0.050 and a thermal inertia in the range 150 to 300 Jm-2s-0.5K-1. Based on estimated thermal conductivities of the top-layer surface in the range 0.1 to 0.6 WK-1m-1, we calculated that the grain sizes are approximately equal to between 1 and 10 mm. The finely constrained values for this asteroid serve as a `design reference model, which is currently used for various planning, operational and modelling purposes by the Hayabusa2 team.
The Japanese Space Agencys Hayabusa II mission is scheduled to rendezvous with and return a sample from the near-Earth asteroid (162173) 1999 JU3. Previous visible-wavelength spectra of this object show significant variability across multiple epochs
We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the international Astronomical Unions H-G formalism but found that it fits less well using a sin
In order to obtain the substantial information about the surface physics and thermal property of the target asteroid (162173) 1999 JU3, which will be visited by Hayabusa 2 in a sample return mission, with the Advanced Thermal Physical Model (ATPM) we
Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japa
Near-Earth asteroid 162173 (1999 JU3) is a potential flyby and rendezvous target for interplanetary missions because of its easy to reach orbit. The physical and thermal properties of the asteroid are relevant for establishing the scientific mission