ﻻ يوجد ملخص باللغة العربية
Despite a lot of research efforts devoted in recent years, how to efficiently learn long-term dependencies from sequences still remains a pretty challenging task. As one of the key models for sequence learning, recurrent neural network (RNN) and its variants such as long short term memory (LSTM) and gated recurrent unit (GRU) are still not powerful enough in practice. One possible reason is that they have only feedforward connections, which is different from the biological neural system that is typically composed of both feedforward and feedback connections. To address this problem, this paper proposes a biologically-inspired deep network, called shuttleNetfootnote{Our code is available at url{https://github.com/shiyemin/shuttlenet}}. Technologically, the shuttleNet consists of several processors, each of which is a GRU while associated with multiple groups of cells and states. Unlike traditional RNNs, all processors inside shuttleNet are loop connected to mimic the brains feedforward and feedback connections, in which they are shared across multiple pathways in the loop connection. Attention mechanism is then employed to select the best information flow pathway. Extensive experiments conducted on two benchmark datasets (i.e UCF101 and HMDB51) show that we can beat state-of-the-art methods by simply embedding shuttleNet into a CNN-RNN framework.
Spatial and temporal relationships, both short-range and long-range, between objects in videos, are key cues for recognizing actions. It is a challenging problem to model them jointly. In this paper, we first present a new variant of Long Short-Term
Computational neuroscience studies that have examined human visual system through functional magnetic resonance imaging (fMRI) have identified a model where the mammalian brain pursues two distinct pathways (for recognition of biological movement tas
Most of the Zero-Shot Learning (ZSL) algorithms currently use pre-trained models as their feature extractors, which are usually trained on the ImageNet data set by using deep neural networks. The richness of the feature information embedded in the pr
The goal of continuous emotion recognition is to assign an emotion value to every frame in a sequence of acoustic features. We show that incorporating long-term temporal dependencies is critical for continuous emotion recognition tasks. To this end,
Symmetric positive definite (SPD) matrices (e.g., covariances, graph Laplacians, etc.) are widely used to model the relationship of spatial or temporal domain. Nevertheless, SPD matrices are theoretically embedded on Riemannian manifolds. In this pap