ﻻ يوجد ملخص باللغة العربية
We present spectra of highly excited D and Ds mesons up to around 3.8 GeV determined using dynamical lattice QCD. We employ novel computational techniques and the variational method with a large basis of carefully constructed operators in order to extract and reliably identify the continuum spin of an extensive set of excited states. These include states with high spin and states identified as having an explicit gluonic contribution. Calculations were performed on two volumes, both with a pion mass of approximately 400 MeV, achieving a high statistical precision for both ground and excited states. We discuss our results in light of experimental observations, comment on the phenomenological implications and identify the lightest `supermultiplet of hybrid mesons in each sector.
We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge confi
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con
The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. Calculations are performed on anisotropic lattices with temporal and spatial spacings a_t = 0.0351(2) and a_s ~ 0.12 fm respec
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4)