ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal control of a linearized continuum model for re-entrant manufacturing production systems

68   0   0.0 ( 0 )
 نشر من قبل Xiaodong Xu
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A re-entrant manufacturing system producing a large number of items and involving many steps can be approximately modeled by a hyperbolic partial differential equation (PDE) according to mass conservation law with respect to a continuous density of items on a production process. The mathematic model is a typical nonlinear and nonlocal PDE and the cycle time depends nonlinearly on the work in progress. However, the nonlinearity brings mathematic and engineering difficulties in practical application. In this work, we address the optimal control based on the linearized system model and in order to improve the model and control accuracy, a modified system model taking into account the re-entrant degree of the product is utilized to reflect characteristics of small-scale and large-scale multiple re-entrant manufacturing systems. In this work, we solve the optimal output reference tracking problem through combination of variation approach and state feedback internal model control (IMC) method. Numerical example on optimal boundary influx for step-like demand rate is presented. In particular, the demand rates are generated by an known exosystem.

قيم البحث

اقرأ أيضاً

We consider a production-inventory control model with finite capacity and two different production rates, assuming that the cumulative process of customer demand is given by a compound Poisson process. It is possible at any time to switch over from t he different production rates but it is mandatory to switch-off when the inventory process reaches the storage maximum capacity. We consider holding, production, shortage penalty and switching costs. This model was introduced by Doshi, Van Der Duyn Schouten and Talman in 1978. Our aim is to minimize the expected discounted cumulative costs up to infinity over all admissible switching strategies. We show that the optimal cost functions for the different production rates satisfy the corresponding Hamilton-Jacobi-Bellman system of equations in a viscosity sense and prove a verification theorem. The way in which the optimal cost functions solve the different variational inequalities gives the switching regions of the optimal strategy, hence it is stationary in the sense that depends only on the current production rate and inventory level. We define the notion of finite band strategies and derive, using scale functions, the formulas for the different costs of the band strategies with one or two bands. We also show that there are examples where the switching strategy presented by Doshi et al. is not the optimal strategy.
Collective migration of animals in a cohesive group is rendered possible by a strategic distribution of tasks among members: some track the travel route, which is time and energy-consuming, while the others follow the group by interacting among thems elves. In this paper, we study a social dynamics system modeling collective migration. We consider a group of agents able to align their velocities to a global target velocity, or to follow the group via interaction with the other agents. The balance between these two attractive forces is our control for each agent, as we aim to drive the group to consensus at the target velocity. We show that the optimal control strategies in the case of final and integral costs consist of controlling the agents whose velocities are the furthest from the target one: these agents sense only the target velocity and become leaders, while the uncontrolled ones sense only the group, and become followers. Moreover, in the case of final cost, we prove an Inactivation principle: there exist initial conditions such that the optimal control strategy consists of letting the system evolve freely for an initial period of time, before acting with full control on the agent furthest from the target velocity.
Optimization problems governed by Allen-Cahn systems including elastic effects are formulated and first-order necessary optimality conditions are presented. Smooth as well as obstacle potentials are considered, where the latter leads to an MPEC. Nume rically, for smooth potential the problem is solved efficiently by the Trust-Region-Newton-Steihaug-cg method. In case of an obstacle potential first numerical results are presented.
183 - Hailiang Liu , Xuping Tian 2020
We present a data-driven optimal control approach which integrates the reported partial data with the epidemic dynamics for COVID-19. We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the model parameters are time-varying and lear ned from the data. This approach serves to forecast the evolution of the outbreak over a relatively short time period and provide scheduled controls of the epidemic. We provide efficient numerical algorithms based on a generalized Pontryagin Maximum Principle associated with the optimal control theory. Numerical experiments demonstrate the effective performance of the proposed model and its numerical approximations.
61 - Andrea Domenici 2021
This paper describes a procedure that system developers can follow to translate typical mathematical representations of linearized control systems into logic theories. These theories are then used to verify system requirements and find constraints on design parameters, with the support of computer-assisted theorem proving. This method contributes to the integration of formal verification methods into the standard model-driven development processes for control systems. The theories obtained through its application comprise a set of assumptions that the system equations must satisfy, and a translation of the equations into the logic language of the Prototype Verification System theorem-proving environment. The method is illustrated with a standard case study from control theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا