ﻻ يوجد ملخص باللغة العربية
In further pursuit of the diagonalizable emph{real nonnegative inverse eigenvalue problem} (RNIEP), we study the relationship between the emph{row cone} $mathcal{C}_r(S)$ and the emph{spectracone} $mathcal{C}(S)$ of a Perron similarity $S$. In the process, a new kind of matrix, emph{row Hadamard conic} (RHC), is defined and related to the D-RNIEP. Characterizations are given when $mathcal{C}_r(S) = mathcal{C}(S)$, and explicit examples are given for all possible set-theoretic relationships between the two cones. The symmetric NIEP is the special case of the D-RNIEP in which the Perron similarity $S$ is also orthogonal.
In this paper, we generalize some conclusions from the nonnegative irreducible tensor to the nonnegative weakly irreducible tensor and give more properties of eigenvalue problems.
Tubal scalars are usual vectors, and tubal matrices are matrices with every element being a tubal scalar. Such a matrix is often recognized as a third-order tensor. The product between tubal scalars, tubal vectors, and tubal matrices can be done by t
In this paper, we mainly focus on how to generalize some conclusions from nonnegative irreducible tensors to nonnegative weakly irreducible tensors. To do so, a basic and important lemma is proven using new tools. First, we give the definition of sto
Let svec = (s_1,...,s_m) and tvec = (t_1,...,t_n) be vectors of nonnegative integer-valued functions of m,n with equal sum S = sum_{i=1}^m s_i = sum_{j=1}^n t_j. Let M(svec,tvec) be the number of m*n matrices with nonnegative integer entries such tha
We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of ma