ترغب بنشر مسار تعليمي؟ اضغط هنا

Spaser and optical amplification conditions in gold-coated active nanoparticles

91   0   0.0 ( 0 )
 نشر من قبل Ra\\'ul A. Bustos-Mar\\'un
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to their many potential applications, there is an increasing interest in studying hybrid systems composed of optically active media and plasmonic metamaterials. In this work we focus on a particular system which consists of an optically active silica core covered by a gold shell. We find that the spaser (surface plasmon amplification by stimulated emission of radiation) conditions can be found at the poles of the scattering cross section of the system, a result that remains valid beyond the geometry studied. We explored a wide range of parameters that cover most of the usual experimental conditions in terms of the geometry of the system and the wavelength of excitation. We show that the conditions of spaser generation necessarily require full loss compensation, but the opposite is not necessarily true. Our results, which are independent of the detailed response of the active medium, provide the gain needed and the wavelength of the spasers that can be produced by a particular geometry, discussing also the possibility of turning the system into optical amplifiers and SERS (surface enhanced Raman spectroscopy) substrates with huge enhancements. We believe that our results can find numerous applications. In particular, they can be useful for experimentalists studying similar systems in both, tuning the experimental conditions and interpreting the results.


قيم البحث

اقرأ أيضاً

We propose a new approach to understand the time-dependent temperature increasing process of gold-silica core-shell nanoparticles injected into chicken tissues under near-infrared laser irradiation. Gold nanoshells strongly absorb near-infrared radia tions and efficiently transform absorbed energy into heat. Temperature rise given by experiments and numerical calculations based on bioheat transfer are in good agreement. Our work improves the analysis of a recent study [Richardson et al., Nano Lett. 9, 1139 (2009)] by including effects of the medium perfusion on temperature increase. The theoretical analysis can also be used to estimate the distribution of nanoparticles in experimental samples and provide a relative accuracy prediction for the temperature profile of new systems. This methodology would provide a novel and reliable tool for speeding up photothermal investigations and designing state-of-the-art photothermal devices.
We theoretically introduce a topological spaser, which consists of a hexagonal array of plasmonic metal nanoshells containing an achiral gain medium in their cores. Such a spaser can generate two mutually time-reversed chiral surface plasmon modes in the $mathbf K$- and $mathbf K^prime$-valleys, which carry the opposite topological charges, $pm1$, and are described by a two-dimensional $E^{prime}$ representation of the $D_{3h}$ point symmetry group. Due to the mode competition, this spaser exhibits a bistability: only one of these two modes generates, which is a spontaneous symmetry breaking. Such a spaser can be used for an ultrafast all-optical memory and information processing
We study the effect of off-resonant plasmon modes on spaser threshold in nanoparticle-based spasers. We develop an analytical semiclassical model and derive spaser threshold condition accounting for gain coupling to higher-order plasmons. We show tha t such a coupling originates from inhomogeneity of gain distribution near the metal surface and leads to an upward shift of spaser frequency and population inversion threshold. This effect is similar, albeit significantly weaker, to quenching of plasmon-enhanced fluorescence near metal nanostructures due to excitation of off-resonant modes with wide spectral band. We also show that spaser quenching is suppressed for high gain concentrations and establish a simple criterion for quenching onset, which we support by numerical calculations for spherical geometry.
Magnetic nanoparticles (NP) of magnetite (Fe3O4) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through Transmission Electron Microscopy (TEM),magnetization M, and ac magnetic susceptibility measurements. The O A coated samples were produced with different magnetic concentrations (78, 76, and 65%) and the DA sample with 63% of Fe3O4. Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter ~ 5.5 nm. Magnetization measurements, performed in zero field cooled (ZFC) and field cooled (FC) processes under different external magnetic fields H, exhibited a maximum at a given temperature TB in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature TB decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase of TB. The observed behavior is related to the dipolar interaction (DI) between NP which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility Xac measurements, where the temperature in which X peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H vs. TB/TB(H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below TB, M vs. H curves show a coercive field (HC) that increases monotonically with decreasing temperature. The saturation magnetization (MS) follows the Blochs law and values of MS at room temperature as high as 78 emu/g were estimated, a result corresponding to ~80% of the bulk value. The overlap of M/MS vs. H/T curves for a given sample and the low HC at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/MS vs. H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration.
A novel approach to control the grain size of oxide thin film materials has been investigated. Perovskite BaTiO3 shows interesting grain structures when deposited on gold predeposited, (111)-oriented, singlecrystal SrTiO3 substrates. Solid oxide film s grow epitaxially on patterned seed layers and show variations in grain size relative to the films deposited on SrTiO3 directly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا