ﻻ يوجد ملخص باللغة العربية
In this paper we develop a framework allowing a natural extension of the Lorentz transformations. To begin, we show that by expanding conventional four-dimensional spacetime to eight-dimensions that a natural generalization is indeed obtained. We then find with these generalized coordinate transformations acting on Maxwells equations that the electromagnetic field transformations are nevertheless unchanged. We find further, that if we assume the absence of magnetic monopoles, in accordance with Maxwells theory, our generalized transformations are then restricted to be the conventional ones. While the conventional Lorentz transformations are indeed recovered from our framework, we nevertheless provide a new perspective into why the Lorentz transformations are constrained to be the conventional ones. Also, this generalized framework may assist in explaining several unresolved questions in electromagnetism as well as to be able to describe quasi magnetic monopoles found in spin-ice systems.
We report the simplest possible form to compute rotations around arbitrary axis and boosts in arbitrary directions for 4-vectors (space-time points, energy-momentum) and bi-vectors (electric and magnetic field vectors) by symplectic similarity transf
Sometimes it becomes a matter of natural choice for an observer (A) that he prefers a coordinate system of two-dimensional spatial x-y coordinates from which he observes another observer (B) who is moving at a uniform speed along a line of motion, wh
We expand the IST transformation to three-dimensional Euclidean space and derive the speed of light under the IST transformation. The switch from the direction cosines observed in K to those observed in K-prime is surprisingly smooth. The formulation
The so-called principle of relativity is able to fix a general coordinate transformation which differs from the standard Lorentzian form only by an unknown speed which cannot in principle be identified with the light speed. Based on a reanalysis of t
In a recent article [1] we have explored alternative decompositions of the Lorentz transformation by adopting the synchronization convention of the target frame at the end and alternately at the outset. In this note we develop the decomposition by as