ﻻ يوجد ملخص باللغة العربية
In a recent article [1] we have explored alternative decompositions of the Lorentz transformation by adopting the synchronization convention of the target frame at the end and alternately at the outset. In this note we develop the decomposition by assuming a correct universal synchronization that may be outside the two inertial frames that are involved.
In this paper we develop a framework allowing a natural extension of the Lorentz transformations. To begin, we show that by expanding conventional four-dimensional spacetime to eight-dimensions that a natural generalization is indeed obtained. We the
Sometimes it becomes a matter of natural choice for an observer (A) that he prefers a coordinate system of two-dimensional spatial x-y coordinates from which he observes another observer (B) who is moving at a uniform speed along a line of motion, wh
We report the simplest possible form to compute rotations around arbitrary axis and boosts in arbitrary directions for 4-vectors (space-time points, energy-momentum) and bi-vectors (electric and magnetic field vectors) by symplectic similarity transf
We expand the IST transformation to three-dimensional Euclidean space and derive the speed of light under the IST transformation. The switch from the direction cosines observed in K to those observed in K-prime is surprisingly smooth. The formulation
In recent years it has been recognized that the hyperbolic numbers (an extension of complex numbers, defined as z=x+h*y with h*h=1 and x,y real numbers) can be associated to space-time geometry as stated by the Lorentz transformations of special rela