ترغب بنشر مسار تعليمي؟ اضغط هنا

The intermediate r-process in core-collapse supernovae driven by the magneto-rotational instability

62   0   0.0 ( 0 )
 نشر من قبل Nobuya Nishimura
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated r-process nucleosynthesis in magneto-rotational supernovae, based on a new explosion mechanism induced by the magneto-rotational instability. A series of axisymmetric magneto-hydrodynamical simulations with detailed microphysics including neutrino heating is performed, numerically resolving the magneto-rotational instability. Neutrino-heating dominated explosions, enhanced by magnetic fields, showed mildly neutron-rich ejecta producing nuclei up to $A sim 130$ (i.e. the weak r-process), while explosion models with stronger magnetic fields reproduce a solar-like r-process pattern. More commonly seen abundance patterns in our models are in between the weak and regular r-process, producing lighter and intermediate mass nuclei. These {it intermediate r-processes} exhibit a variety of abundance distributions, compatible with several abundance patterns in r-process-enhanced metal-poor stars. The amount of Eu ejecta $sim 10^{-5} M_odot$ in magnetically-driven jets agrees with predicted values in the chemical evolution of early galaxies. In contrast, neutrino-heating dominated explosions have a significant amount of Fe ($^{56}{rm Ni}$) and Zn, comparable to regular supernovae and hypernovae, respectively. These results indicate magneto-rotational supernovae can produce a wide range of heavy nuclei from iron-group to r-process elements, depending on the explosion dynamics.



قيم البحث

اقرأ أيضاً

Bearing in mind the application to core-collapse supernovae, we study nonlinear properties of the magneto-rotational instability (MRI) by means of three- dimensional simulations in the framework of a local shearing box approximation. By changing syst ematically the shear rates that symbolize the degree of differential rotation in nascent proto-neutron stars (PNSs), we derive a scaling relation between the turbulent stress sustained by the MRI and the shear- vorticity ratio. Our parametric survey shows a power-law scaling between the turbulent stress ($<< w_{rm tot}>>$) and the shear- vorticity ratio ($g_q$) as $<<w_{rm tot}>> propto g_q^{delta}$ with its index $delta sim 0.5$. The MRI-amplified magnetic energy has a similar scaling relative to the turbulent stress, while the Maxwell stress has slightly smaller power-law index ($sim 0.36$). By modeling the effect of viscous heating rates due to the MRI turbulence, we show that the stronger magnetic fields or the larger shear rates initially imposed lead to the higher dissipation rates. For a rapidly rotating PNS with the spin period in milliseconds and with strong magnetic fields of $10^{15}$ G, the energy dissipation rate is estimated to exceed $10^{51} {rm erg sec^{-1}}$. Our results suggest that the conventional magnetohydrodynamic (MHD) mechanism of core-collapse supernovae is likely to be affected by the MRI-driven turbulence, which we speculate, on one hand, could harm the MHD-driven explosions due to the dissipation of the shear rotational energy at the PNS surface, on the other hand the energy deposition there might be potentially favorable for the working of the neutrino-heating mechanism.
277 - E. Abdikamalov 2014
We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a $27$-$M_odot$ progenito r star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), (3) SASI dominated evolution. This confirms previous 3D results of Hanke et al. 2013, ApJ 770, 66 and Couch & Connor 2014, ApJ 785, 123. We carry out simulations with resolutions differing by up to a factor of $sim$4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case, since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum $E(ell)$ develops in the heating layer. Like other 3D studies, we find $E(ell) propto ell^{-1}$ in the inertial range, while theory and local simulations argue for $E(ell) propto ell^{-5/3}$. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy containing scale, creating a bottleneck that prevents an efficient turbulent cascade.
Core-collapse Supernovae (CCSNe) mark the deaths of stars more massive than about eight times the mass of the sun and are intrinsically the most common kind of catastrophic cosmic explosions. They can teach us about many important physical processes, such as nucleosynthesis and stellar evolution, and thus, they have been studied extensively for decades. However, many crucial questions remain unanswered, including the most basic ones regarding which kinds of massive stars achieve which kind of explosions and how. Observationally, this question is related to the open puzzles of whether CCSNe can be divided into distinct types or whether they are drawn from a population with a continuous set of properties, and of what progenitor characteristics drive the diversity of observed explosions. Recent developments in wide-field surveys and rapid-response followup facilities are helping us answer these questions by providing two new tools: (1) large statistical samples which enable population studies of the most common SNe, and reveal rare (but extremely informative) events that question our standard understanding of the explosion physics involved, and (2) observations of early SNe emission taken shortly after explosion which carries signatures of the progenitor structure and mass loss history. Future facilities will increase our capabilities and allow us to answer many open questions related to these extremely energetic phenomena of the Universe.
112 - E. Abdikamalov 2018
Convective instabilities in the advanced stages of nuclear shell burning can play an important role in neutrino-driven supernova explosions. In our previous work, we studied the interaction of vorticity and entropy waves with the supernova shock usin g a linear perturbations theory. In this paper, we extend our work by studying the effect of acoustic waves. As the acoustic waves cross the shock, the perturbed shock induces a field of entropy and vorticity waves in the post-shock flow. We find that, even when the upstream flow is assumed to be dominated by sonic perturbations, the shock-generated vorticity waves contain most of the turbulent kinetic energy in the post-shock region, while the entropy waves produced behind the shock are responsible for most of the density perturbations. The entropy perturbations are expected to become buoyant as a response to the gravity force and then generate additional turbulence in the post-shock region. This leads to a modest reduction of the critical neutrino luminosity necessary for producing an explosion, which we estimate to be less than $ sim 5 % $.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا