ترغب بنشر مسار تعليمي؟ اضغط هنا

New Regimes in the Observation of Core-Collapse Supernovae

109   0   0.0 ( 0 )
 نشر من قبل Iair Arcavi Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Core-collapse Supernovae (CCSNe) mark the deaths of stars more massive than about eight times the mass of the sun and are intrinsically the most common kind of catastrophic cosmic explosions. They can teach us about many important physical processes, such as nucleosynthesis and stellar evolution, and thus, they have been studied extensively for decades. However, many crucial questions remain unanswered, including the most basic ones regarding which kinds of massive stars achieve which kind of explosions and how. Observationally, this question is related to the open puzzles of whether CCSNe can be divided into distinct types or whether they are drawn from a population with a continuous set of properties, and of what progenitor characteristics drive the diversity of observed explosions. Recent developments in wide-field surveys and rapid-response followup facilities are helping us answer these questions by providing two new tools: (1) large statistical samples which enable population studies of the most common SNe, and reveal rare (but extremely informative) events that question our standard understanding of the explosion physics involved, and (2) observations of early SNe emission taken shortly after explosion which carries signatures of the progenitor structure and mass loss history. Future facilities will increase our capabilities and allow us to answer many open questions related to these extremely energetic phenomena of the Universe.

قيم البحث

اقرأ أيضاً

174 - C. D. Ott 2009
Core-collapse supernovae are among Natures most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of gal axies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmanis scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.
133 - M. Witt , A. Psaltis , H. Yasin 2021
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during sev eral seconds. We present a broad study based on three progenitors (11.2 $M_odot$, 15 $M_odot$, and 27 $M_odot$), different neutrino-heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind that survives for several seconds. This indicates that neutrino-driven winds are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 $M_odot$ progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.
In the last decade there has been a remarkable increase in our knowledge about core-collapse supernovae (CC-SNe), and the birthplace of neutron stars, from both the observational and the theoretical point of view. Since the 1930s, with the first syst ematic supernova search, the techniques for discovering and studying extragalactic SNe have improved. Many SNe have been observed, and some of them, have been followed through efficiently and with detail. Furthermore, there has been a significant progress in the theoretical modelling of the scenario, boosted by the arrival of new generations of supercomputers that have allowed to perform multidimensional numerical simulations with unprecedented detail and realism. The joint work of observational and theoretical studies of individual SNe over the whole range of the electromagnetic spectrum has allowed to derive physical parameters, which constrain the nature of the progenitor, and the composition and structure of the stars envelope at the time of the explosion. The observed properties of a CC-SN are an imprint of the physical parameters of the explosion such as mass of the ejecta, kinetic energy of the explosion, the mass loss rate, or the structure of the star before the explosion. In this chapter, we review the current status of SNe observations and theoretical modelling, the connection with their progenitor stars, and the properties of the neutron stars left behind.
242 - Yudai Suwa 2020
Neutrinos are a guaranteed signal from supernova explosions in the Milky Way, and a most valuable messenger that can provide us with information about the deepest parts of supernovae. In particular, neutrinos will provide us with physical quantities, such as the radius and mass of protoneutron stars (PNS), which are the central engine of supernovae. This requires a theoretical model that connects observables such as neutrino luminosity and average energy with physical quantities. Here, we show analytic solutions for the neutrino-light curve derived from the neutrino radiation transport equation by employing the diffusion approximation and the analytic density solution of the hydrostatic equation for a PNS. The neutrino luminosity and the average energy as functions of time are explicitly presented, with dependence on PNS mass, radius, the total energy of neutrinos, surface density, and opacity. The analytic solutions provide good representations of the numerical models from a few seconds after the explosion and allow a rough estimate of these physical quantities to be made from observational data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا