ترغب بنشر مسار تعليمي؟ اضغط هنا

Logarithmic Tree Factorials

198   0   0.0 ( 0 )
 نشر من قبل Omid Amini
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Omid Amini




اسأل ChatGPT حول البحث

To any rooted tree, we associate a sequence of numbers that we call the logarithmic factorials of the tree. This provides a generalization of Bhargavas factorials to a natural combinatorial setting suitable for studying questions around generalized factorials. We discuss several basic aspects of the framework in this paper. In particular, we relate the growth of the sequence of logarithmic factorials associated to a tree to the transience of the random walk and the existence of a harmonic measure on the tree, obtain an equidistribution theorem for factorial-determining-sequences of subsets of local fields, and provide a factorial-based characterization of the branching number of infinite trees. Our treatment is based on a local weighting process in the tree which gives an effective way of constructing the factorial sequence.

قيم البحث

اقرأ أيضاً

We show that in any two-coloring of the positive integers there is a color for which the set of positive integers that can be represented as a sum of distinct elements with this color has upper logarithmic density at least $(2+sqrt{3})/4$ and this is best possible. This answers a forty-year-old question of ErdH{o}s.
109 - Yidong Sun , Jujuan Zhuang 2010
Recently, by the Riordans identity related to tree enumerations, begin{eqnarray*} sum_{k=0}^{n}binom{n}{k}(k+1)!(n+1)^{n-k} &=& (n+1)^{n+1}, end{eqnarray*} Sun and Xu derived another analogous one, begin{eqnarray*} sum_{k=0}^{n}binom{n}{k}D_{k+1}(n+1 )^{n-k} &=& n^{n+1}, end{eqnarray*} where $D_{k}$ is the number of permutations with no fixed points on ${1,2,dots, k}$. In the paper, we utilize the $lambda$-factorials of $n$, defined by Eriksen, Freij and W$ddot{a}$stlund, to give a unified generalization of these two identities. We provide for it a combinatorial proof by the functional digraph theory and another two algebraic proofs. Using the umbral representation of our generalized identity and the Abels binomial formula, we deduce several properties for $lambda$-factorials of $n$ and establish the curious relations between the generating functions of general and exponential types for any sequence of numbers or polynomials.
Let the random variable $X, :=, e(mathcal{H}[B])$ count the number of edges of a hypergraph $mathcal{H}$ induced by a random $m$ element subset $B$ of its vertex set. Focussing on the case that $mathcal{H}$ satisfies some regularity condition we prov e bounds on the probability that $X$ is far from its mean. It is possible to apply these results to discrete structures such as the set of $k$-term arithmetic progressions in the cyclic group $mathbb{Z}_N$. Furthermore, we show that our main theorem is essentially best possible and we deduce results for the case $Bsim B_p$ is generated by including each vertex independently with probability $p$.
We develop a theory of log adic spaces by combining the theories of adic spaces and log schemes, and study the Kummer etale and pro-Kummer etale topology for such spaces. We also establish the primitive comparison theorem in this context, and deduce from it some related cohomological finiteness or vanishing results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا