ترغب بنشر مسار تعليمي؟ اضغط هنا

$lambda$-factorials of $n$

108   0   0.0 ( 0 )
 نشر من قبل Yidong Sun
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, by the Riordans identity related to tree enumerations, begin{eqnarray*} sum_{k=0}^{n}binom{n}{k}(k+1)!(n+1)^{n-k} &=& (n+1)^{n+1}, end{eqnarray*} Sun and Xu derived another analogous one, begin{eqnarray*} sum_{k=0}^{n}binom{n}{k}D_{k+1}(n+1)^{n-k} &=& n^{n+1}, end{eqnarray*} where $D_{k}$ is the number of permutations with no fixed points on ${1,2,dots, k}$. In the paper, we utilize the $lambda$-factorials of $n$, defined by Eriksen, Freij and W$ddot{a}$stlund, to give a unified generalization of these two identities. We provide for it a combinatorial proof by the functional digraph theory and another two algebraic proofs. Using the umbral representation of our generalized identity and the Abels binomial formula, we deduce several properties for $lambda$-factorials of $n$ and establish the curious relations between the generating functions of general and exponential types for any sequence of numbers or polynomials.

قيم البحث

اقرأ أيضاً

197 - Omid Amini 2016
To any rooted tree, we associate a sequence of numbers that we call the logarithmic factorials of the tree. This provides a generalization of Bhargavas factorials to a natural combinatorial setting suitable for studying questions around generalized f actorials. We discuss several basic aspects of the framework in this paper. In particular, we relate the growth of the sequence of logarithmic factorials associated to a tree to the transience of the random walk and the existence of a harmonic measure on the tree, obtain an equidistribution theorem for factorial-determining-sequences of subsets of local fields, and provide a factorial-based characterization of the branching number of infinite trees. Our treatment is based on a local weighting process in the tree which gives an effective way of constructing the factorial sequence.
Let $p(n)$ denote the partition function. Desalvo and Pak proved the log-concavity of $p(n)$ for $n>25$ and the inequality $frac{p(n-1)}{p(n)}left(1+frac{1}{n}right)>frac{p(n)}{p(n+1)}$ for $n>1$. Let $r(n)=sqrt[n]{p(n)/n}$ and $Delta$ be the differe nce operator respect to $n$. Desalvo and Pak pointed out that their approach to proving the log-concavity of $p(n)$ may be employed to prove a conjecture of Sun on the log-convexity of ${r(n)}_{ngeq 61}$, as long as one finds an appropriate estimate of $Delta^2 log r(n-1)$. In this paper, we obtain a lower bound for $Delta^2log r(n-1)$, leading to a proof of this conjecture. From the log-convexity of ${r(n)}_{ngeq61}$ and ${sqrt[n]{n}}_{ngeq4}$, we are led to a proof of another conjecture of Sun on the log-convexity of ${sqrt[n]{p(n)}}_{ngeq27}$. Furthermore, we show that $limlimits_{n rightarrow +infty}n^{frac{5}{2}}Delta^2logsqrt[n]{p(n)}=3pi/sqrt{24}$. Finally, by finding an upper bound of $Delta^2 logsqrt[n-1]{p(n-1)}$, we prove an inequality on the ratio $frac{sqrt[n-1]{p(n-1)}}{sqrt[n]{p(n)}}$ analogous to the above inequality on the ratio $frac{p(n-1)}{p(n)}$.
66 - Yangyan Gu , Xuding Zhu 2021
Assume $ k $ is a positive integer, $ lambda={k_1,k_2,...,k_q} $ is a partition of $ k $ and $ G $ is a graph. A $lambda$-assignment of $ G $ is a $ k $-assignment $ L $ of $ G $ such that the colour set $ bigcup_{vin V(G)} L(v) $ can be partitioned into $ q $ subsets $ C_1cup C_2cupcdotscup C_q $ and for each vertex $ v $ of $ G $, $ |L(v)cap C_i|=k_i $. We say $ G $ is $lambda$-choosable if for each $lambda$-assignment $ L $ of $ G $, $ G $ is $ L $-colourable. In particular, if $ lambda={k} $, then $lambda$-choosable is the same as $ k $-choosable, if $ lambda={1, 1,...,1} $, then $lambda$-choosable is equivalent to $ k $-colourable. For the other partitions of $ k $ sandwiched between $ {k} $ and $ {1, 1,...,1} $ in terms of refinements, $lambda$-choosability reveals a complex hierarchy of colourability of graphs. Assume $lambda={k_1, ldots, k_q} $ is a partition of $ k $ and $lambda $ is a partition of $ kge k $. We write $ lambdale lambda $ if there is a partition $lambda={k_1, ldots, k_q}$ of $k$ with $k_i ge k_i$ for $i=1,2,ldots, q$ and $lambda$ is a refinement of $lambda$. It follows from the definition that if $ lambdale lambda $, then every $lambda$-choosable graph is $lambda$-choosable. It was proved in [X. Zhu, A refinement of choosability of graphs, J. Combin. Theory, Ser. B 141 (2020) 143 - 164] that the converse is also true. This paper strengthens this result and proves that for any $ lambda otle lambda $, for any integer $g$, there exists a graph of girth at least $g$ which is $lambda$-choosable but not $lambda$-choosable.
We study the central part of Lambda N and Lambda Lambda potential by considering the correlated and uncorrelated two-meson exchange besides the omega exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find t hat a short range repulsion is generated by the correlated two-meson potential which also produces an attraction in the intermediate distance region. The uncorrelated two-meson exchange produces a sizeable attraction in all cases which is counterbalanced by omega exchange contribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا