ﻻ يوجد ملخص باللغة العربية
We develop a framework for combining differentiable programming languages with neural networks. Using this framework we create end-to-end trainable systems that learn to write interpretable algorithms with perceptual components. We explore the benefits of inductive biases for strong generalization and modularity that come from the program-like structure of our models. In particular, modularity allows us to learn a library of (neural) functions which grows and improves as more tasks are solved. Empirically, we show that this leads to lifelong learning systems that transfer knowledge to new tasks more effectively than baselines.
We study the problem of learning differentiable functions expressed as programs in a domain-specific language. Such programmatic models can offer benefits such as composability and interpretability; however, learning them requires optimizing over a c
Graph neural networks (GNNs), which learn the representation of a node by aggregating its neighbors, have become an effective computational tool in downstream applications. Over-smoothing is one of the key issues which limit the performance of GNNs a
We make three related contributions motivated by the challenge of training stochastic neural networks, particularly in a PAC-Bayesian setting: (1) we show how averaging over an ensemble of stochastic neural networks enables a new class of emph{partia
Automated neural network design has received ever-increasing attention with the evolution of deep convolutional neural networks (CNNs), especially involving their deployment on embedded and mobile platforms. One of the biggest problems that neural ar
In seeking for sparse and efficient neural network models, many previous works investigated on enforcing L1 or L0 regularizers to encourage weight sparsity during training. The L0 regularizer measures the parameter sparsity directly and is invariant