ترغب بنشر مسار تعليمي؟ اضغط هنا

Point-to-Point Stabilised Optical Frequency Transfer with Active Optics

67   0   0.0 ( 0 )
 نشر من قبل Benjamin P. Dix-Matthews
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Timescale comparison between optical atomic clocks over ground-to-space and terrestrial free-space laser links will have enormous benefits for fundamental and applied science, from measurements of fundamental constants and searches for dark matter, to geophysics and environmental monitoring. However, turbulence in the atmosphere creates phase noise on the laser signal, greatly degrading the precision of the measurements, and also induces scintillation and beam wander which cause periodic deep fades and loss of signal. We demonstrate phase stabilized optical frequency transfer over a 265 m horizontal point-to-point free-space link between optical terminals with active tip-tilt mirrors to suppress beam wander, in a compact, human-portable set-up. A phase stabilized 715 m underground optical fiber link between the two terminals is used to measure the performance of the free-space link. The active optics terminals enabled continuous, coherent transmission over periods of up to an hour. We achieve an 80 dB suppression of atmospheric phase noise to $3times10^{-6}$ rad$^{2}$Hz$^{-1}$ at 1 Hz, and an ultimate fractional frequency stability of $1.6times10^{-19}$ after 40 s of integration. At high frequency this performance is limited by the residual atmospheric noise after compensation and the frequency noise of the laser seen through the unequal delays of the free space and fiber links. Our long term stability is limited by the thermal shielding of the phase stabilization system. We achieve residual instabilities below those of the best optical atomic clocks, ensuring clock-limited frequency comparison over turbulent free-space links.



قيم البحث

اقرأ أيضاً

135 - Xiang Zhang , Liang Hu , Xue Deng 2021
Optical fibers have been recognized as one of the most promising host material for high phase coherence optical frequency transfer over thousands of kilometers. In the pioneering work, the active phase noise cancellation (ANC) technique has been wide ly used for suppressing the fiber phase noise introduced by the environmental perturbations, in which an ideal phase detector with high resolution and unlimited detection range is needed to extract the fiber phase noise, in particular for noisy fiber links. We demonstrate the passive phase noise cancellation (PNC) technique without the need of phase detector could be preferable for noisy fiber links. To avoid the effect of the radio frequency (RF) from the time base at the local site in the conventional active or passive phase noise cancellation techniques, here we introduce a fiber-pigtailed acousto-optic modulator (AOM) with two diffraction order outputs (0 and +1 order) with properly allocating the AOM-driving frequencies allowing to cancel the time base effect. Using this technique, we demonstrate transfer of coherent light through a 260 km noisy urban fiber link. The results show the effect of the RF reference can be successfully removed. After being passively compensated, {we demonstrate a fractional frequency instability of $4.9times10^{-14}$ at the integration time of 1 s and scales down to $10^{-20}$ level at 10,000 s in terms of modified Allan deviation over the 260 km noisy urban fiber link}. The frequency uncertainty of the retrieved light after transferring through this noise-compensated fiber link relative to that of the input light achieves $(0.41pm4.7)times10^{-18}$. The proposed technique opens a way to a broad distribution of an ultrastable frequency reference with high coherence without any effects coming from the RF reference and enables a wide range of applications beyond metrology over fiber networks.
While it has been shown that backscattering induced phase noise can be suppressed by adopting acoustic-optic-modulators (AOMs) at the local and remote sites to break the frequency symmetry in both directions. However, this issue can not be avoided fo r conventional fiber-optic multiple-access coherent optical phase dissemination in which the interference of the signal light with the Rayleigh backscattered light will probably destroy the coherence of the stabilized optical signal. We suppress the backscattering effect by locally breaking the frequency symmetry at the extraction point by inserting an additional AOM. Here, we theoretically analyze and experimentally demonstrate an add-drop one more AOM approach for suppressing the Rayleigh backscattering within the fiber link. Near-complete suppression of backscattering noise is experimentally confirmed through the measurement the elimination of a common interference term of the signal light and the Rayleigh backscattered light. The results demonstrate that the Rayleigh backscattering light has a limited effect compared to the residual delay-limited fiber phase noise on the systems performance. Our results also provide new evidence that it is possible to largely suppress Rayleigh and other backscattering noise within a long optical fiber link, where the accumulated phase noise could be large, by using frequency symmetry breaking at each access node to achieve robust multiple-access coherent optical phase propagation in spite of scatters or defects.
128 - Qi Li , Liang Hu , jinbo Zhang 2021
We report on the realization of a novel fiber-optic radio frequency (RF) transfer scheme with the bidirectional frequency division multiplexing (FDM) dissemination technique. Here, the proper bidirectional frequency map used in the forward and backwa rd directions for suppressing the backscattering noise and ensuring the symmetry of the bidirectional transfer RF signals within one telecommunication channel. We experimentally demonstrated a 0.9 GHz signal transfer over a 120 km optical link with the relative frequency stabilities of 2.2E-14 at 1 s and 4.6E-17 at 20,000 s. The implementation of phase noise compensation at the remote site has the capability to perform RF transfer over a branching fiber network with the proposed technique as needed by large-scale scientific experiments.
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadb and high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution precisely matched to the comb mode spacing. Here we give a full theoretical description of this sub-nominal resolution method and describe in detail the experimental and numerical steps needed to retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3{ u}1+{ u}3 band of CO2. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.
- Paper withdrawn by the author - CMOS Monolithic Active Pixel Sensors for charged particle tracking are considered as technology for numerous experiments in heavy ion and particle physics. To match the requirements for those applications in terms of tolerance to non-ionizing radiation, it is being tried to deplete the sensitive volume of the, traditionally non-depleted, silicon sensors. We study the feasibility of this approach for the common case that the collection diodes of the pixel are small as compared to the pixel pitch. An analytic equation predicting the thickness of the depletion depth and the capacity of this point-like junction is introduced. We find that the predictions of this equations differs qualitatively from the usual results for flat PN junctions and that $dC/dU$-measurements are not suited to measure the depletion depth of diodes with point-like geometry. The predictions of the equation is compared with measurements on the depletion depth of CMOS sensors, which were carried out with a novel measurement protocol. It is found that the equation and the measurement results match with each other. By comparing our findings with TCAD simulations, we find that precise simulation models matches the empirical findings while simplified models overestimate the depletion depth dramatically. A potential explanation for this finding is introduced and the consequences for the design of CMOS sensors are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا