ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadron yields, the chemical freeze-out and the QCD phase diagram

440   0   0.0 ( 0 )
 نشر من قبل Anton Andronic
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the status of the chemical freeze-out, determined from fits of hadron yields with the statistical hadronization (thermal) model, with focus on the data at the LHC. A description of the yields of hadrons containing light quarks as well as the application of the model for the production of the J/$psi$ meson is presented. The implications for the QCD phase diagram are discussed.

قيم البحث

اقرأ أيضاً

We argue that hadron multiplicities in central high energy nucleus-nucleus collisions are established very close to the phase boundary between hadronic and quark matter. In the hadronic picture this can be described by multi-particle collisions whose importance is strongly enhanced due to the high particle density in the phase transition region. As a consequence of the rapid fall-off of the multi-particle scattering rates the experimentally determined chemical freeze-out temperature is a good measure of the phase transition temperature.
The description of hadron production in relativistic heavy-ion collisions in the statistical hadronization model is very good, over a broad range of collision energy. We outline this both for the light (u, d, s) and heavy (charm) quarks and discuss t he connection it brings to the phase diagram of QCD.
The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) sigma-omega approach. The commonly adopted noninteracting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out differ up to 150 MeV from their vacuum values.
In high multiplicity nucleus-nucleus collisions baryon-antibaryon annihilation and regeneration occur during the final hadronic expansion phase, thus distorting the initial equilibrium multiplicity ratios. We quantify the modifications employing the hybrid UrQMD transport model and apply them to the grand canonical partition functions of the Statistical Hadronization Model(SHM). We analyze minimum bias and central Pb+Pb collision data at SPS and LHC energy. We explain the Pion to Proton ratio puzzle. We also reproduce the deuteron to proton ratio at LHC energy by the SHM, and by UrQMD after attaching a phase space coalescence process. We discuss the resulting (T,$mu_{B}$) diagram.
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia l such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا