In this paper we propose and realize (the code is publicly available at https://github.com/Thrawn1985/2D-Partition-Function) an algorithm for exact calculation of partition function for planar graph models with binary spins. The complexity of the algorithm is O(N^2). Test experiments shows good agreement with Onsagers analytical solution for two-dimensional Ising model of infinite size.
For random matrices with tree-like structure there exists a recursive relation for the local Green functions whose solution permits to find directly many important quantities in the limit of infinite matrix dimensions. The purpose of this note is to
investigate and compare expressions for the spectral density of random regular graphs, based on easy approximations for real solutions of the recursive relation valid for trees with large coordination number. The obtained formulas are in a good agreement with the results of numerical calculations even for small coordination number.
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree. Conversely, in biological and technological networks, high-degree nodes tend to be linked with
low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an efficient and exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is O(NM) where N is the number of nodes and M is the number of edges.
We solve the q-state Potts model with anti-ferromagnetic interactions on large random lattices of finite coordination. Due to the frustration induced by the large loops and to the local tree-like structure of the lattice this model behaves as a mean
field spin glass. We use the cavity method to compute the temperature-coordination phase diagram and to determine the location of the dynamic and static glass transitions, and of the Gardner instability. We show that for q>=4 the model possesses a phenomenology similar to the one observed in structural glasses. We also illustrate the links between the positive and the zero-temperature cavity approaches, and discuss the consequences for the coloring of random graphs. In particular we argue that in the colorable region the one-step replica symmetry breaking solution is stable towards more steps of replica symmetry breaking.
Critical slowing down dynamics of supercooled glass-forming liquids is usually understood at the mean-field level in the framework of Mode Coupling Theory, providing a two-time relaxation scenario and power-law behaviors of the time correlation funct
ion at dynamic criticality. In this work we derive critical slowing down exponents of spin-glass models undergoing discontinuous transitions by computing their Gibbs free energy and connecting the dynamic behavior to static in-state properties. Both the spherical and Isi
We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localisation transition. The classical model is defined on a graph in the Fock space of a disordered, interacting qua
ntum spin chain, using a convenient choice of basis. Edges of the graph represent matrix elements of the spin Hamiltonian between pairs of basis states that are expected to hybridise strongly. At weak disorder, all nodes are connected, forming a single cluster. Many separate clusters appear above a critical disorder strength, each typically having a size that is exponentially large in the number of spins but a vanishing fraction of the Fock-space dimension. We formulate a transfer matrix approach that yields an exact value $ u=2$ for the localisation length exponent, and also use complete enumeration of clusters to study the transition numerically in finite-sized systems.
Yakov M. Karandashev
,Magomed Yu. Malsagov
.
(2016)
.
"Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs"
.
Magomed Malsagov Yusupovich
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا