ﻻ يوجد ملخص باللغة العربية
We illustrate how finite-temperature charge and thermal Drude weights of one-dimensional systems can be obtained from the relaxation of initial states featuring global (left-right) gradients in the chemical potential or temperature. The approach is tested for spinless interacting fermions as well as for the Fermi-Hubbard model, and the behaviour in the vicinity of singular points (such as half filling or isotropic chains) is discussed. We present technical details on how to implement the calculation in practice using the density matrix renormalization group and show that the non-equilibrium dynamics is often less demanding to simulate numerically and features simpler finite-time transients than the corresponding linear response current correlators; thus, new parameter regimes can become accessible. As an application, we determine the thermal Drude weight of the Hubbard model for temperatures T which are an order of magnitude smaller than those reached in the equilibrium approach. This allows us to demonstrate that at low T and half filling, thermal transport is successively governed by spin excitations and described quantitatively by the Bethe ansatz Drude weight of the Heisenberg chain.
Drude weight ($D$) is a useful measure to distinguish a metal from an insulator. However, $D$ has not been justifiably estimated by the variation theory for long, since Millis and Coppersmith [Phys. Rev. B 43 (1991) 13770] pointed out that a variatio
We calculate the charge and spin Drude weight of the one-dimensional extended Hubbard model with on-site repulsion $U$ and nearest-neighbor repulsion $V$ at quarter filling using the density-matrix renormalization group method combined with a variati
Significant advances in numerical techniques have enabled recent breakthroughs in the study of various properties of the Hubbard model - a seemingly simple, yet complex model of correlated electrons that has been a focus of study for more than half a
We present a comprehensive study of single crystals of Na2Co2TeO6, a putative Kitaev honeycomb magnet, focusing on its low-temperature phase behaviors. A new thermal phase transition is identified at 31.0 K, below which the system develops a two-dime
We present a combination method based on orignal version of Davidson algorithm for extracting few of the lowest eigenvalues and eigenvectors of a sparse symmetric Hamiltonian matrix and the simplest version of Lanczos technique for obtaining a tridia