ﻻ يوجد ملخص باللغة العربية
We describe two new open source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program for using Gaussian mixtures to do density estimation of noisy data using extreme deconvolution (XD) algorithms that has functionality not available in other XD tools. It allows the user to select between the AstroML (Vanderplas et al. 2012; Ivezic et al. 2015) and Bovy et al. (2011) fitting methods and is compatible with scikit-learn machine learning algorithms (Pedregosa et al. 2011). Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model conditioned on known values of other parameters. EmpiriciSN is an example application of this functionality that can be used for fitting an XDGMM model to observed supernova/host datasets and predicting likely supernova parameters using on a model conditioned on observed host properties. It is primarily intended for simulating realistic supernovae for LSST data simulations based on empirical galaxy properties.
Many processes in chemistry and physics take place on timescales that cannot be explored using standard molecular dynamics simulations. This renders the use of enhanced sampling mandatory. Here we introduce an enhanced sampling method that is based o
The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors
We present a new framework to detect various types of variable objects within massive astronomical time-series data. Assuming that the dominant population of objects is non-variable, we find outliers from this population by using a non-parametric Bay
We present a novel Bayesian method, referred to as Blobby3D, to infer gas kinematics that mitigates the effects of beam smearing for observations using Integral Field Spectroscopy (IFS). The method is robust for regularly rotating galaxies despite su
In this paper we address the problem of building a class of robust factorization algorithms that solve for the shape and motion parameters with both affine (weak perspective) and perspective camera models. We introduce a Gaussian/uniform mixture mode