ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Variability in Massive Astronomical Time-Series Data I: application of an infinite Gaussian mixture model

224   0   0.0 ( 0 )
 نشر من قبل Min-Su Shin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new framework to detect various types of variable objects within massive astronomical time-series data. Assuming that the dominant population of objects is non-variable, we find outliers from this population by using a non-parametric Bayesian clustering algorithm based on an infinite GaussianMixtureModel (GMM) and the Dirichlet Process. The algorithm extracts information from a given dataset, which is described by six variability indices. The GMM uses those variability indices to recover clusters that are described by six-dimensional multivariate Gaussian distributions, allowing our approach to consider the sampling pattern of time-series data, systematic biases, the number of data points for each light curve, and photometric quality. Using the Northern Sky Variability Survey data, we test our approach and prove that the infinite GMM is useful at detecting variable objects, while providing statistical inference estimation that suppresses false detection. The proposed approach will be effective in the exploration of future surveys such as GAIA, Pan-Starrs, and LSST, which will produce massive time-series data.



قيم البحث

اقرأ أيضاً

We present variability analysis of data from the Northern Sky Variability Survey (NSVS). Using the clustering method which defines variable candidates as outliers from large clusters, we cluster 16,189,040 light curves, having data points at more tha n 15 epochs, as variable and non-variable candidates in 638 NSVS fields. Variable candidates are selected depending on how strongly they are separated from the largest cluster and how rarely they are grouped together in eight dimensional space spanned by variability indices. All NSVS light curves are also cross-correlated to the Infrared Astronomical Satellite, AKARI, Two Micron All Sky Survey, Sloan Digital Sky Survey (SDSS), and Galaxy Evolution Explorer objects as well as known objects in the SIMBAD database. The variability analysis and cross-correlation results are provided in a public online database which can be used to select interesting objects for further investigation. Adopting conservative selection criteria for variable candidates, we find about 1.8 million light curves as possible variable candidates in the NSVS data, corresponding to about 10% of our entire NSVS samples. Multi-wavelength colors help us find specific types of variability among the variable candidates. Moreover, we also use morphological classification from other surveys such as SDSS to suppress spurious cases caused by blending objects or extended sources due to the low angular resolution of the NSVS.
The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large datasets. Gaussian Processes are a popular class of models used for this purpose but, since th e computational cost scales, in general, as the cube of the number of data points, their application has been limited to small datasets. In this paper, we present a novel method for Gaussian Process modeling in one-dimension where the computational requirements scale linearly with the size of the dataset. We demonstrate the method by applying it to simulated and real astronomical time series datasets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically-driven damped harmonic oscillators -- providing a physical motivation for and interpretation of this choice -- but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable Gaussian Process methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.
Photometric measurements are prone to systematic errors presenting a challenge to low-amplitude variability detection. In search for a general-purpose variability detection technique able to recover a broad range of variability types including curren tly unknown ones, we test 18 statistical characteristics quantifying scatter and/or correlation between brightness measurements. We compare their performance in identifying variable objects in seven time series data sets obtained with telescopes ranging in size from a telephoto lens to 1m-class and probing variability on time-scales from minutes to decades. The test data sets together include lightcurves of 127539 objects, among them 1251 variable stars of various types and represent a range of observing conditions often found in ground-based variability surveys. The real data are complemented by simulations. We propose a combination of two indices that together recover a broad range of variability types from photometric data characterized by a wide variety of sampling patterns, photometric accuracies, and percentages of outlier measurements. The first index is the interquartile range (IQR) of magnitude measurements, sensitive to variability irrespective of a time-scale and resistant to outliers. It can be complemented by the ratio of the lightcurve variance to the mean square successive difference, 1/h, which is efficient in detecting variability on time-scales longer than the typical time interval between observations. Variable objects have larger 1/h and/or IQR values than non-variable objects of similar brightness. Another approach to variability detection is to combine many variability indices using principal component analysis. We present 124 previously unknown variable stars found in the test data.
74 - Joel D. Hartman 2016
This paper describes the VARTOOLS program, which is an open-source command-line utility, written in C, for analyzing astronomical time-series data, especially light curves. The program provides a general-purpose set of tools for processing light curv es including signal identification, filtering, light curve manipulation, time
exoplanet is a toolkit for probabilistic modeling of astronomical time series data, with a focus on observations of exoplanets, using PyMC3 (Salvatier et al., 2016). PyMC3 is a flexible and high-performance model-building language and inference engin e that scales well to problems with a large number of parameters. exoplanet extends PyMC3s modeling language to support many of the custom functions and probability distributions required when fitting exoplanet datasets or other astronomical time series. While it has been used for other applications, such as the study of stellar variability, the primary purpose of exoplanet is the characterization of exoplanets or multiple star systems using time-series photometry, astrometry, and/or radial velocity. In particular, the typical use case would be to use one or more of these datasets to place constraints on the physical and orbital parameters of the system, such as planet mass or orbital period, while simultaneously taking into account the effects of stellar variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا