ترغب بنشر مسار تعليمي؟ اضغط هنا

Hessenberg varieties and hyperplane arrangements

137   0   0.0 ( 0 )
 نشر من قبل Takuro Abe
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a semisimple complex linear algebraic group $G$ and a lower ideal $I$ in positive roots of $G$, three objects arise: the ideal arrangement $mathcal{A}_I$, the regular nilpotent Hessenberg variety $mbox{Hess}(N,I)$, and the regular semisimple Hessenberg variety $mbox{Hess}(S,I)$. We show that a certain graded ring derived from the logarithmic derivation module of $mathcal{A}_I$ is isomorphic to $H^*(mbox{Hess}(N,I))$ and $H^*(mbox{Hess}(S,I))^W$, the invariants in $H^*(mbox{Hess}(S,I))$ under an action of the Weyl group $W$ of $G$. This isomorphism is shown for general Lie type, and generalizes Borels celebrated theorem showing that the coinvariant algebra of $W$ is isomorphic to the cohomology ring of the flag variety $G/B$. This surprising connection between Hessenberg varieties and hyperplane arrangements enables us to produce a number of interesting consequences. For instance, the surjectivity of the restriction map $H^*(G/B)to H^*(mbox{Hess}(N,I))$ announced by Dale Peterson and an affirmative answer to a conjecture of Sommers-Tymoczko are immediate consequences. We also give an explicit ring presentation of $H^*(mbox{Hess}(N,I))$ in types $B$, $C$, and $G$. Such a presentation was already known in type $A$ or when $mbox{Hess}(N,I)$ is the Peterson variety. Moreover, we find the volume polynomial of $mbox{Hess}(N,I)$ and see that the hard Lefschetz property and the Hodge-Riemann relations hold for $mbox{Hess}(N,I)$, despite the fact that it is a singular variety in general.

قيم البحث

اقرأ أيضاً

In this paper we construct an additive basis for the cohomology ring of a regular nilpotent Hessenberg variety which is obtained by extending all Poincare duals of smaller regular nilpotent Hessenberg varieties. In particular, all of the Poincare dua ls of smaller regular nilpotent Hessenberg varieties in the given regular nilpotent Hessenberg variety are linearly independent.
Let $n$ be a fixed positive integer and $h: {1,2,ldots,n} rightarrow {1,2,ldots,n}$ a Hessenberg function. The main results of this paper are twofold. First, we give a systematic method, depending in a simple manner on the Hessenberg function $h$, fo r producing an explicit presentation by generators and relations of the cohomology ring $H^ast(Hess(mathsf{N},h))$ with $mathbb{Q}$ coefficients of the corresponding regular nilpotent Hessenberg variety $Hess(mathsf{N},h)$. Our result generalizes known results in special cases such as the Peterson variety and also allows us to answer a question posed by Mbirika and Tymoczko. Moreover, our list of generators in fact forms a regular sequence, allowing us to use techniques from commutative algebra in our arguments. Our second main result gives an isomorphism between the cohomology ring $H^*(Hess(mathsf{N},h))$ of the regular nilpotent Hessenberg variety and the $S_n$-invariant subring $H^*(Hess(mathsf{S},h))^{S_n}$ of the cohomology ring of the regular semisimple Hessenberg variety (with respect to the $S_n$-action on $H^*(Hess(mathsf{S},h))$ defined by Tymoczko). Our second main result implies that $mathrm{dim}_{mathbb{Q}} H^k(Hess(mathsf{N},h)) = mathrm{dim}_{mathbb{Q}} H^k(Hess(mathsf{S},h))^{S_n}$ for all $k$ and hence partially proves the Shareshian-Wachs conjecture in combinatorics, which is in turn related to the well-known Stanley-Stembridge conjecture. A proof of the full Shareshian-Wachs conjecture was recently given by Brosnan and Chow, but in our special case, our methods yield a stronger result (i.e. an isomorphism of rings) by more elementary considerations. This paper provides detailed proofs of results we recorded previously in a research announcement.
180 - Takuro Abe 2020
We establish a general theory for projective dimensions of the logarithmic derivation modules of hyperplane arrangements. That includes the addition-deletion and restriction theorem, Yoshinaga-type result, and the division theorem for projective dime nsions of hyperplane arrangements. They are generalizations of the free arrangement cases, that can be regarded as the special case of our result when the projective dimension is zero. The keys to prove them are several new methods to determine the surjectivity of the Euler and the Ziegler restriction maps, that is combinatorial when the projective dimension is not maximal for all localizations. Also, we introduce a new class of arrangements in which the projective dimension is comibinatorially determined.
In this paper, we study the class of free hyperplane arrangements. Specifically, we investigate the relations between freeness over a field of finite characteristic and freeness over $mathbb{Q}$.
A general vanishing result for the first cohomology group of affine smooth complex varieties with values in rank one local systems is established. This is applied to the determination of the monodromy action on the first cohomology group of the Milno r fiber of some line arrangements, including the monomial arrangement and the exceptional reflection arrangement of type $G_{31}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا