ﻻ يوجد ملخص باللغة العربية
A framework is presented for including second-order perturbative corrections to the radiation patterns of parton showers. The formalism allows to combine O(alphaS^2)-corrected iterated 2->3 kernels for ordered gluon emissions with tree-level 2->4 kernels for unordered ones. The combined Sudakov evolution kernel is thus accurate to O(alphaS^2). As a first step towards a full-fledged implementation of these ideas, we develop an explicit implementation of 2->4 shower branchings in this letter.
We derive a new method for initial-state collinear showering in Monte-Carlo event generators which is based on the use of unintegrated parton correlation functions. Combined with a previously derived method for final-state showering, the method solve
We present the determination of Transverse Momentum Dependent (TMD) parton distributions from Monte Carlo parton showers. We investigate the effective TMD distributions obtained from the PYTHIA8 and HERWIG6 parton showers and compare them to the TMD
Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interaction
A Monte-Carlo event-generator has been developed which is dedicated to simulate electron-positron annihilations. Especially a new approach for the combination of matrix elements and parton showers ensures the independence of the hadronization paramet