ترغب بنشر مسار تعليمي؟ اضغط هنا

The science case for spacecraft exploration of the Uranian satellites: Candidate ocean worlds in an ice giant system

79   0   0.0 ( 0 )
 نشر من قبل Richard Cartwright
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 27 satellites of Uranus are enigmatic, with dark surfaces coated by material that could be rich in organics. Voyager 2 imaged the southern hemispheres of Uranus five largest classical moons Miranda, Ariel, Umbriel, Titania, and Oberon, as well as the largest ring moon Puck, but their northern hemispheres were largely unobservable at the time of the flyby and were not imaged. Additionally, no spatially resolved datasets exist for the other 21 known moons, and their surface properties are essentially unknown. Because Voyager 2 was not equipped with a near-infrared mapping spectrometer, our knowledge of the Uranian moons surface compositions, and the processes that modify them, is limited to disk-integrated datasets collected by ground- and space-based telescopes. Nevertheless, images collected by the Imaging Science System on Voyager 2 and reflectance spectra collected by telescope facilities indicate that the five classical moons are candidate ocean worlds that might currently have, or had, liquid subsurface layers beneath their icy surfaces. To determine whether these moons are ocean worlds, and investigate Uranus ring moons and irregular satellites, close-up observations and measurements made by instruments onboard a Uranus orbiter are needed.



قيم البحث

اقرأ أيضاً

The five classical Uranian moons are possible ocean worlds that exhibit bizarre geologic landforms, hinting at recent surface-interior communication. However, Uranus classical moons, as well as its ring moons and irregular satellites, remain poorly u nderstood. We assert that a Flagship-class orbiter is needed to explore the Uranian satellites.
In the course of the selection of the scientific themes for the second and third L-class missions of the Cosmic Vision 2015-2025 program of the European Space Agency, the exploration of the ice giant planets Uranus and Neptune was defined a timely mi lestone, fully appropriate for an L class mission. Among the proposed scientific themes, we presented the scientific case of exploring both planets and their satellites in the framework of a single L-class mission and proposed a mission scenario that could allow to achieve this result. In this work we present an updated and more complete discussion of the scientific rationale and of the mission concept for a comparative exploration of the ice giant planets Uranus and Neptune and of their satellite systems with twin spacecraft. The first goal of comparatively studying these two similar yet extremely different systems is to shed new light on the ancient past of the Solar System and on the processes that shaped its formation and evolution. This, in turn, would reveal whether the Solar System and the very diverse extrasolar systems discovered so far all share a common origin or if different environments and mechanisms were responsible for their formation. A space mission to the ice giants would also open up the possibility to use Uranus and Neptune as templates in the study of one of the most abundant type of extrasolar planets in the galaxy. Finally, such a mission would allow a detailed study of the interplanetary and gravitational environments at a range of distances from the Sun poorly covered by direct exploration, improving the constraints on the fundamental theories of gravitation and on the behaviour of the solar wind and the interplanetary magnetic field.
The international planetary science community met in London in January 2020, united in the goal of realising the first dedicated robotic mission to the distant Ice Giants, Uranus and Neptune, as the only major class of Solar System planet yet to be c omprehensively explored. Ice-Giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests of our understanding of planetary origins, exotic water-rich planetary interiors, dynamic seasonal atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue of Philosophical Transactions of the Royal Society A on Ice Giant System exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades.
The purpose of this document is to discuss the scientific case of a space mission to the ice giants Uranus and Neptune and their satellite systems and its relevance to advance our understanding of the ancient past of the Solar System and, more genera lly, of how planetary systems form and evolve. As a consequence, the leading theme of this proposal will be the first scientific theme of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergence of life? In pursuing its goals, the present proposal will also address the second and third scientific theme of the Cosmic Vision 2015-2025 program, i.e.: How does the Solar System work? What are the fundamental physical laws of the Universe? The mission concept we will illustrate in the following will be referred to through the acronym ODINUS, this acronym being derived from its main fields of scientific investigation: Origins, Dynamics and Interiors of Neptunian and Uranian Systems. As the name suggests, the ODINUS mission is based on the use of two twin spacecraft to perform the exploration of the ice giants and their regular and irregular satellites with the same set of instruments. This will allow to perform a comparative study of these two systems so similar and yet so different and to unveil their histories and that of the Solar System.
106 - H.R. Wakeford , P.A. Dalba 2020
Exoplanets number in their thousands, and the number is ever increasing with the advent of new surveys and improved instrumentation. One of the most surprising things we have learnt from these discoveries is not that small-rocky planets in their star s habitable zones are likely common, but that the most typical size of exoplanet is that not seen in our solar system - radii between that of Neptune and the Earth dubbed mini-Neptunes and super-Earths. In fact, a transiting exoplanet is four times as likely to be in this size regime than that of any giant planet in our solar system. Investigations into the atmospheres of giant hydrogen/helium dominated exoplanets has pushed down to Neptune and mini-Neptune sized worlds revealing molecular absorption from water, scattering and opacity from clouds, and measurements of atmospheric abundances. However, unlike measurements of Jupiter, or even Saturn sized worlds, the smaller giants lack a ground truth on what to expect or interpret from their measurements. How did these sized worlds form and evolve and was it different from their larger counterparts? What is their internal composition and how does that impact their atmosphere? What informs the energy budget of these distant worlds? In this we discuss what characteristics we can measure for exoplanets, and why a mission to the ice giants in our solar system is the logical next step for understanding exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا