ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution of ratio of two Wishart matrices and evaluation of cumulative probability by holonomic gradient method

448   0   0.0 ( 0 )
 نشر من قبل Akimichi Takemura
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the distribution of the ratio of two central Wishart matrices with different covariance matrices. We first derive the density function of a particular matrix form of the ratio and show that its cumulative distribution function can be expressed in terms of the hypergeometric function 2F1 of a matrix argument. Then we apply the holonomic gradient method for numerical evaluation of the hypergeometric function. This approach enables us to compute the power function of Roys maximum root test for testing the equality of two covariance matrices.



قيم البحث

اقرأ أيضاً

We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We trea t this distribution as an integral of the normalizing constant of the Fisher-Bingham distribution on the unit sphere and make use of the partial differential equations for the Fisher-Bingham distribution.
A holonomic system for the probability density function of the largest eigenvalue of a non-central complex Wishart distribution with identity covariance matrix is derived. Furthermore a new determinantal formula for the probability density function is derived (for m=2,3) or conjectured.
Here in this paper, it is tried to obtain and compare the ML estimations based on upper record values and a random sample. In continue, some theorems have been proven about the behavior of these estimations asymptotically.
We show that the distribution of the scalar Schur complement in a noncentral Wishart matrix is a mixture of central chi-square distributions with different degrees of freedom. For the case of a rank-1 noncentrality matrix, the weights of the mixture representation arise from a noncentral beta mixture of Poisson distributions.
166 - Peter S. Chami , Bernd Sing , 2012
We propose a two parameter ratio-product-ratio estimator for a finite population mean in a simple random sample without replacement following the methodology in Ray and Sahai (1980), Sahai and Ray (1980), Sahai and Sahai (1985) and Singh and Ruiz Esp ejo (2003). The bias and mean square error of our proposed estimator are obtained to the first degree of approximation. We derive conditions for the parameters under which the proposed estimator has smaller mean square error than the sample mean, ratio and product estimators. We carry out an application showing that the proposed estimator outperforms the traditional estimators using groundwater data taken from a geological site in the state of Florida.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا