ﻻ يوجد ملخص باللغة العربية
Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on Cu(111) surface, which shows an unexpected remarkably sharp and strong emission near 3.16 eV (full-width at half-maximum $leq$ 3meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue-shift, showing the characteristic negative thermal coefficient of graphene. Observed PLs originate from significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene $pi$ and Cu d orbitals of the 1st and 2nd Cu layers at a shifted saddle point 0.525(M+K) of Brillouin zone. This finding provides a new pathway to engineering novel optoelectronic graphene devices, whilst maintaining the outstanding electrical properties of graphene.
We analyze the many-particle correlations that affect the optical properties of two-dimensional semiconductors. These correlations manifest themselves through the specific optical resonances such as excitons, trions, etc. Starting from the generic el
Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surfa
We present a study of graphene/substrate interactions on UHV-grown graphene islands with minimal surface contamination using emph{in situ} low-temperature scanning tunneling microscopy (STM). We compare the physical and electronic structure of the sa
This is a comment on M. Stern, V. Garmider, E. Segre, M. Rappaport, V. Umansky, Y. Levinson, and I. Bar-Joseph, Phys. Rev. Lett. 101, 257402 (2008).
Atomically thin magnets are the key element to build up spintronics based on two-dimensional materials. The surface nature of two-dimensional ferromagnet opens up opportunities to improve the device performance efficiently. Here, we report the intrin