ترغب بنشر مسار تعليمي؟ اضغط هنا

The Phase-Contrast Imaging Instrument at the Matter in Extreme Conditions Endstation at LCLS

274   0   0.0 ( 0 )
 نشر من قبل Bob Nagler
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the Phase-Contrast Imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 femtosecond. It was specifically designed for studies relevant to High-Energy-Density Science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.



قيم البحث

اقرأ أيضاً

We describe a setup for performing inelastic X-ray scattering measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source (LCLS). This technique is capable of performing high-, meV-resolution measurements of d ynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) monochromator was used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of ~50 meV over a range of ~500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup may be combined with the high intensity laser drivers available at MEC to create warm dense matter, and subsequently measure ion acoustic modes.
Angle-resolved photoemission spectroscopy (ARPES) is one of the most powerful experimental techniques in condensed matter physics. Synchrotron ARPES, which uses photons with high flux and continuously tunable energy, has become particularly important . However, an excellent synchrotron ARPES system must have features such as a small beam spot, super-high energy resolution, and a user-friendly operation interface. A synchrotron beamline and an endstation (BL03U) were designed and constructed at the Shanghai Synchrotron Radiation Facility. The beam spot size at the sample position is 7.5 (V) $mu$m $times$ 67 (H) $mu$m, and the fundamental photon range is 7-165 eV; the ARPES system enables photoemission with an energy resolution of 2.67 [email protected] eV. In addition, the ARPES system of this endstation is equipped with a six-axis cryogenic sample manipulator (the lowest temperature is 7 K) and is integrated with an oxide molecular beam epitaxy system and a scanning tunneling microscope, which can provide an advanced platform for in-situ characterization of the fine electronic structure of condensed matter.
The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL will so on provide 27,000 pulses per second, more than two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The obtained results pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultra-fast, x-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectru m is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with precision of 10 nanoseconds. Waveform fitting yields simultaneously high energy resolution and high counting rates (2 orders of magnitude higher than current digital pulse processors). We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs) and used it to fit a complex pile-up spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to 6 photons from 6 monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the x-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with similar performance to an SDD, in a compact, robust and affordable package
100 - Shenghao Wang , Can Zhang 2017
We reported the usage of grating-based X-ray phase-contrast imaging in nondestructive testing of grating imperfections. It was found that electroplating flaws could be easily detected by conventional absorption signal, and in particular, we observed that the grating defects resulting from uneven ultraviolet exposure could be clearly discriminated with phase-contrast signal. The experimental results demonstrate that grating-based X-ray phase-contrast imaging, with a conventional low-brilliance X-ray source, a large field of view and a reasonable compact setup, which simultaneously yields phase- and attenuation-contrast signal of the sample, can be ready-to-use in fast nondestructive testing of various imperfections in gratings and other similar photoetching products.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا