ﻻ يوجد ملخص باللغة العربية
Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultra-fast, x-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with precision of 10 nanoseconds. Waveform fitting yields simultaneously high energy resolution and high counting rates (2 orders of magnitude higher than current digital pulse processors). We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs) and used it to fit a complex pile-up spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to 6 photons from 6 monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the x-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with similar performance to an SDD, in a compact, robust and affordable package
The response of silicon drift detectors (SDDs), which were mounted together with their preamplifiers inside a vacuum chamber, was studied in a temperature range from 100 K to 200 K. In particular, the energy resolution could be stabilized to about 15
Particle production from secondary proton-proton collisions, commonly referred to as pile-up, impair the sensitivity of both new physics searches and precision measurements at LHC experiments. We propose a novel algorithm, PUMA, for identifying pile-
A detailed study of charge collection efficiency has been performed on the Silicon Drift Detectors (SDD) of the ALICE experiment. Three different methods to study the collected charge as a function of the drift time have been implemented. The first a
Sterile neutrinos are a minimal extension of the Standard Model of Particle Physics. A promising model-independent way to search for sterile neutrinos is via high-precision beta spectroscopy. The Karlsruhe Tritium Neutrino (KATRIN) experiment, equipp
With Skipper-CCD detectors it is possible to take multiple samples of the charge packet collected on each pixel. After averaging the samples, the noise can be extremely reduced allowing the exact counting of electrons per pixel. In this work we prese