ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin orbit effects in CoFeB/MgO hetereostructures with heavy metal underlayers

303   0   0.0 ( 0 )
 نشر من قبل Masamitsu Hayashi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study effects originating from the strong spin orbit coupling in CoFeB/MgO heterostructures with heavy metal (HM) underlayers. The perpendicular magnetic anisotropy at the CoFeB/MgO interface, the spin Hall angle of the heavy metal layer, current induced torques and the Dzyaloshinskii-Moriya interaction at the HM/CoFeB interfaces are studied for films in which the early 5d transition metals are used as the HM underlayer. We show how the choice of the HM layer influences these intricate spin orbit effects that emerge within the bulk and at interfaces of the heterostructures.

قيم البحث

اقرأ أيضاً

Recent advances in the understanding of spin orbital effects in ultrathin magnetic heterostructures have opened new paradigms to control magnetic moments electrically. The Dzyaloshinskii-Moriya interaction (DMI) is said to play a key role in forming a Neel-type domain wall that can be driven by the spin Hall torque, a torque resulting from the spin current generated in a neighboring non-magnetic layer via the spin Hall effect. Here we show that the strength and sign of the DMI can be changed by modifying the adjacent heavy metal underlayer (X) in perpendicularly magnetized X|CoFeB|MgO heterstructures. Albeit the same spin Hall angle, a domain wall moves along or against the electron flow depending on the underlayer. We find that the sense of rotation of a domain wall spiral11 is reversed when the underlayer is changed from Hf to W and the strength of DMI varies as the number of 5d electrons of the heavy metal layer changes. The DMI can even be tuned by adding nitrogen to the underlayer, thus allowing interface engineering of the magnetic texture in ultrathin magnetic heterostructures.
We investigate the spin-dependent Seebeck coefficient and the tunneling magneto thermopower of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJ) in the presence of thermal gradients across the MTJ. Thermal gradients are generated by an electric heater on top of the nanopillars. The thermo power voltage across the MTJ is found to scale linearly with the heating power and reveals similar field dependence as the tunnel magnetoresistance. The amplitude of the thermal gradient is derived from calibration measurements in combination with finite element simulations of the heat flux. Based on this, large spin-dependent Seebeck coefficients of the order of (240 pm 110) muV/K are derived. From additional measurements on MTJs after dielectric breakdown, a tunneling magneto thermopower up to 90% can be derived for 1.5 nm MgO based MTJ nanopillars.
Spin current generated by spin Hall effect in the heavy metal would diffuse up and down to adjacent ferromagnetic layers and exert torque on their magnetization, called spin-orbit torque. Antiferromagnetically coupled trilayers, namely the so-called synthetic antiferromagnets (SAF), are usually employed to serve as the pinned layer of spintronic devices based on spin valves and magnetic tunnel junctions to reduce the stray field and/or increase the pinning field. Here we investigate the spin-orbit torque in MgO/CoFeB/Ta/CoFeB/MgO perpendicularly magnetized multilayer with interlayer antiferromagnetic coupling. It is found that the magnetization of two CoFeB layers can be switched between two antiparallel states simultaneously. This observation is replicated by the theoretical calculations by solving Stoner-Wohlfarth model and Landau-Lifshitz-Gilbert equation. Our findings combine spin-orbit torque and interlayer coupling, which might advance the magnetic memories with low stray field and low power consumption.
In transition-metal dichalcogenides, electrons in the K-valleys can experience both Ising and Rashba spin-orbit couplings. In this work, we show that the coexistence of Ising and Rashba spin-orbit couplings leads to a special type of valley Hall effe ct, which we call spin-orbit coupling induced valley Hall effect. Importantly, near the conduction band edge, the valley-dependent Berry curvatures generated by spin-orbit couplings are highly tunable by external gates and dominate over the intrinsic Berry curvatures originating from orbital degrees of freedom under accessible experimental conditions. We show that the spin-orbit coupling induced valley Hall effect is manifested in the gate dependence of the valley Hall conductivity, which can be detected by Kerr effect experiments.
92 - G. Reiss , J. Ludwig , K. Rott 2019
Thin electrodes of magnetic tunnel junctions can show superparamagnetism at surprisingly low temperature. We analysed their thermally induced switching for varying temperature, magnetic and electric field. Although the dwell times follow an Arrhenius law, they are orders of magnitude too small compared to a model of single domain activation. Including entropic effects removes this inconsistency and leads to a magnetic activation volume much smaller than that of the electrode. Comparing data for varying barrier thickness then allows to separate the impact of Zeman energy, spin-transfer-torque and voltage induced anisotropy change on the dwell times. Based on these results, we demonstrate a tuning of the switching rates by combining magnetic and electric fields, which opens a path for their application in noisy neural networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا