ﻻ يوجد ملخص باللغة العربية
The $mathrm{^{16}O}(alpha, alpha^{prime})$ reaction was studied at $theta_{lab} = 0^circ$ at an incident energy of $textrm{E}_{lab}$ = 200 MeV using the K600 magnetic spectrometer at iThemba LABS. Proton and $alpha$-decay from the natural parity states were observed in a large-acceptance silicon-strip detector array at backward angles. The coincident charged particle measurements were used to characterize the decay channels of the $0_{6}^{+}$ state in $mathrm{^{16}O}$ located at $E_{x} = 15.097(5)$ MeV. This state is identified by several theoretical cluster calculations to be a good candidate for the 4-$alpha$ cluster state. The results of this work suggest the presence of a previously unidentified resonance at $E_{x}approx15$ MeV that does not exhibit a $0^{+}$ character. This unresolved resonance may have contaminated previous observations of the $0_{6}^{+}$ state.
Inelastic $alpha$ scattering on 16O is studied at 400 MeV by using an ice target. Near the 4-alpha breakup threshold of 14.4 MeV, a broad peak is observed at an excitation energy of 13.6+/-0.2 MeV with a width of 0.6+/-0.2 MeV. The spin-parity is est
Knowledge of the gamma-ray branching ratios of the 7.12-MeV state of 16O is important for the extrapolation of the 12C(a,g)16O cross section to astrophysical energies. Ground state transitions provide most of the 12C(a,g)16O total cross section while
The total cross section of 12C(alpha,gamma)16O was measured for the first time by a direct and ungated detection of the 16O recoils. This measurement in inverse kinematics using the recoil mass separator ERNA in combination with a windowless He gas t
The experimental angular distributions for 20Ne+16O elastic transfer are reanalyzed using different forms of potential both phenomenological and semi-microscopic. The significant increase in cross sections at backward hemisphere due to the contributi
The absolute cross section of the $^{13}$C($alpha$,n)$^{16}$O reaction has been measured at E$_{alpha}$ = 0.8 to 8.0 MeV with an overall accuracy of 4%. The precision is needed to subtract reliably a background in the observation of geo-neutrinos, e.g. in the KamLAND detector.