ﻻ يوجد ملخص باللغة العربية
In this work, we design a TiO2 nanomembrane (TiNM) that can be used as a nanofilter platform for a selective enrichment of specific proteins. After use the photocatalytic properties of TiO2 allow to decompose unwanted remnant on the substrate and thus make the platform reusable. To construct this platform we fabricate a free-standing TiO2 nanotube array and remove the bottom oxide to form a both-end open TiNM. By pyrolysis of the natural tube wall contamination (C/TiNM), the walls become decorated with graphitic carbon patches. Owing to the large surface area, the amphiphilic nature and the charge adjustable character, this C/TiNM can be used to extract and enrich hydrophobic and charged biomolecules from solutions. Using human serum albumin (HSA) as a model protein as well as protein mixtures, we show that the composite membrane exhibits a highly enhanced loading capacity and protein selectivity and is reusable after a short UV treatment.
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machinin
The present work reports on the enhancement of TiO2 nanotubes photoelectrochemical water splitting rate by decorating the nanostructure with an amine layer in a hydrothermal process using diethylenetriamine (DETA). The aminate coated TiO2 tubes show
Carbon nanotube quantum dots allow accurate control of electron charge, spin and valley degrees of freedom in a material which is atomically perfect and can be grown isotopically pure. These properties underlie the unique potential of carbon nanotube
We apply first principles calculations to study the opening of single-wall carbon nanotubes (SWNTs) by oxidation. We show that an oxygen rim can stabilize the edge of the open tube. The sublimation of CO$_2$ molecules from the rim with the subsequent
We describe a film of highly-aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotub