ﻻ يوجد ملخص باللغة العربية
In this short note, for countably infinite amenable group actions, we provide topological proofs for the following results: Bowen topological entropy (dimensional entropy) of the whole space equals the usual topological entropy along tempered F{o}lner sequences; the Hausdorff dimension of an amenable subshift (for certain metric associated to some F{o}lner sequence) equals its topological entropy. This answers questions by Zheng and Chen (Israel Journal of Mathematics 212 (2016), 895-911) and Simpson (Theory Comput. Syst. 56 (2015), 527-543).
In this paper, we study discrete spectrum of invariant measures for countable discrete amenable group actions. We show that an invariant measure has discrete spectrum if and only if it has bounded measure complexity. We also prove that, discrete sp
The paper offers a thorough study of multiorders and their applications to measure-preserving actions of countable amenable groups. By a multiorder on a countable group we mean any probability measure $ u$ on the collection $mathcal O$ of linear orde
For every infinite (countable discrete) amenable group $G$ and every positive integer $d$ we construct a minimal $G$-action of mean dimension $d/2$ which cannot be embedded in the full $G$-shift on $([0,1]^d)^G$.
We define the topological pressure for any sub-additive potentials of the countable discrete amenable group action and any given open cover. A local variational principle for the topological pressure is established.
Symbolic Extension Entropy Theorem (SEET) describes the possibility of a lossless digitalization of a dynamical system by extending it to a subshift. It gives an estimate on the entropy of symbolic extensions (and the necessary number of symbols). Un