ﻻ يوجد ملخص باللغة العربية
We present a quantitative measurement of the amount of clustering present in the inner $sim30$ kpc of the stellar halo of the Andromeda galaxy (M31). For this we analyse the angular positions and radial velocities of the carefully selected Planetary Nebulae (PNe) in the M31 stellar halo. We study the cumulative distribution of pair-wise distances in angular position and line of sight velocity space, and find that the M31 stellar halo contains substantially more stars in the form of close pairs as compared to that of a featureless smooth halo. In comparison to a smoothed/scrambled distribution we estimate that the clustering excess in the M31 inner halo is roughly $40%$ at maximum and on average $sim 20%$. Importantly, comparing against the 11 stellar halo models of cite{2005ApJ...635..931B}, which were simulated within the context of the $Lambda{rm CDM}$ cosmological paradigm, we find that the amount of substructures in the M31 stellar halo closely resembles that of a typical $Lambda{rm CDM}$ halo.
We present a direct comparison of the Pan-Andromeda Archaeological Survey (PAndAS) observations of the stellar halo of M31 with the stellar halos of 6 galaxies from the Auriga simulations. We process the simulated halos through the Auriga2PAndAS pipe
We present a photometric survey of the stellar halo of the Andromeda galaxy, using Suprime-Cam on the Subaru Telescope. A detailed analysis of VI color-magnitude diagrams of the resolved stellar population is used to measure properties such as line-o
The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Ga
We present an analysis of the large-scale structure of the halo of the Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS), currently the most complete map of resolved stellar populations in any galactic halo. Despite copious s
Large-scale faint structure detected by the recent observations in the halo of the Andromeda galaxy (M31) provides an attractive window to explore the structure of outer cold dark matter (CDM) halo in M31. Using an N-body simulation of the interactio