ﻻ يوجد ملخص باللغة العربية
I review the concept of a {em disorder operator}, introduced originally by Kadanoff in the context of the two-dimensional Ising model. Disorder operators acquire an expectation value in the disordered phase of the classical spin system. This concept has had applications and implications to many areas of physics ranging from quantum spin chains to gauge theories to topological phases of matter. In this paper I describe the role that disorder operators play in our understanding of ordered, disordered and topological phases of matter. The role of disorder operators, and their generalizations, and their connection with dualities in different systems, as well as with Majorana fermions and parafermions, is discussed in detail. Their role in recent fermion-boson and boson-boson dualities is briefly discussed.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, b
Recent experimental findings on anomalous diffusion have demanded novel models that combine annealed (temporal) and quenched (spatial or static) disorder mechanisms. The comb-model is a simplified description of diffusion on percolation clusters, whe
We show how classical and quantum dualities, as well as duality relations that appear only in a sector of certain theories (emergent dualities), can be unveiled, and systematically established. Our method relies on the use of morphisms of the bond al
We discuss eigenstate correlations for ergodic, spatially extended many-body quantum systems, in terms of the statistical properties of matrix elements of local observables. While the eigenstate thermalization hypothesis (ETH) is known to give an exc
We construct topological defects in two-dimensional classical lattice models and quantum chains. The defects satisfy local commutation relations guaranteeing that the partition function is independent of their path. These relations and their solution