ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of timing characteristics of a 3 m long plastic scintillator counter using waveform digitizers

71   0   0.0 ( 0 )
 نشر من قبل Alexander Korzenev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A plastic scintillator bar with dimensions 300 cm x 2.5 cm x 11 cm was exposed to a focused muon beam to study its light yield and timing characteristics as a function of position and angle of incidence. The scintillating light was read out at both ends by photomultiplier tubes whose pulse shapes were recorded by waveform digitizers. Results obtained with the WAVECATCHER and SAMPIC digitizers are analyzed and compared. A discussion of the various factors affecting the timing resolution is presented. Prospects for applications of plastic scintillator technology in large-scale particle physics detectors with timing resolution around 100 ps are provided in light of the results.

قيم البحث

اقرأ أيضاً

71 - T. A. Laplace 2020
The proton light yield of organic scintillators has been measured extensively in recent years using fast waveform digitizers and large discrepancies exist in the values reported by different authors. In this letter, we address principles of digital s ignal processing that must be considered when conducting scintillator light yield measurements. Digitized waveform pulse height values are only proportional to the amount of scintillation light if the temporal shape of the scintillation pulse is independent of the amount of energy deposited. This is not the case for scintillation pulses resulting from fast neutron interactions in organic scintillators. Authors measuring proton light yield should therefore report pulse integral values and ensure that the integration length is long enough to capture most of the scintillation light.
High-time-resolution counters based on plastic scintillator with silicon photomultiplier (SiPM) readout have been developed for applications to high energy physics experiments for which relatively large-sized counters are required. We have studied co unter sizes up to $120times40times5$ mm^3 with series connection of multiple SiPMs to increase the sensitive area and thus achieve better time resolution. A readout scheme with analog shaping and digital waveform analysis is optimized to achieve the highest time resolution. The timing performance is measured using electrons from a Sr-90 radioactive source, comparing different scintillators, counter dimensions, and types of near-ultraviolet sensitive SiPMs. As a result, a resolution of $sigma =42 pm 2$ ps at 1 MeV energy deposition is obtained for counter size $60times 30 times 5$ mm^3 with three SiPMs ($3times3$ mm^2 each) at each end of the scintillator. The time resolution improves with the number of photons detected by the SiPMs. The SiPMs from Hamamatsu Photonics give the best time resolution because of their high photon detection efficiency in the near-ultraviolet region. Further improvement is possible by increasing the number of SiPMs attached to the scintillator.
This paper discusses the effects of radiation damage to SiPMs on the performances of plastic scintillator counters with series-connected SiPM readout, focusing on timing measurements. The performances of a counter composed of a $120 times 40 times5~m athrm{mm}^3$ scintillator tile read out by two sets of six SiPMs from AdvanSiD connected in series attached on the short sides are presented, for different combinations of SiPMs at various levels of irradiation. Firstly, six SiPMs were equally irradiated with electrons from $^{90}$Sr sources up to a fluence of $Phi_mathrm{e^-}approx 3 times 10^{12}~mathrm{cm}^{-2}$. The timing resolution of the counter gradually deteriorated by the increase in dark current. The dark current and the deterioration were reduced when the counter was cooled from 30$^circ$C to 10$^circ$C. Secondly, 33 SiPMs were irradiated with reactor neutrons. The characteristics of counters read out by series-connected SiPMs with non-uniform damage levels, were investigated. The signal pulse height, the time response, and the timing resolution depend on the hit position in the counter, when SiPMs irradiation is not uniform.
The Mu2e experiment at Fermilab searches for the charged flavor violating conversion of a muon into an electron in the Coulomb field of a nucleus. The detector consists of a straw tube tracker and a CSI crystal electromagnetic calorimeter, both house d in a superconducting solenoid. Both the front-end and the digital electronics, located inside the cryostat, will be operated in vacuum under a 1 T magnetic field, having to sustain the high flux of neutrons and ionizing particles coming from the muons stopping target. These harsh experimental conditions make the design of the calorimeter waveform digitizer quite challenging. All the selected commercial devices must be tested individually and qualified for radiation hardness and operation in high magnetic field. At the moment the expected particles flux and spectra at the digitizers location are not completely simulated and we are using initial rough estimates to select the components for the first prototype. We are gaining experience in the qualification procedures using the selected components but the choice will be frozen only when dose and neutron flux simulations will be completed. The experimental results of the first qualification campaign are presented.
Technology developed for the T2K electromagnetic calorimeter has been adapted to make a small footprint, reliable, segmented detector to characterise anti-neutrinos emitted by nuclear reactors. The device has been developed and demonstrated by the Un iversity of Liverpool and underwent field tests at the Wylfa Magnox Reactor on Anglesey, UK. It was situated in a 20,ft ISO shipping container, above ground, roughly 60,m from the 1.5,GWt reactor core. Based on the design of the T2K Near Detector ECal, the device detects anti-neutrinos through the distinctive delayed coincidence signal of inverse $beta$-decay interactions using extruded plastic scintillator and Hamamatsu Multi-Pixel Photon Counters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا