ترغب بنشر مسار تعليمي؟ اضغط هنا

Components Qualification for a Possible use in the Mu2e Calorimeter Waveform Digitizers

123   0   0.0 ( 0 )
 نشر من قبل Luca Morescalchi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mu2e experiment at Fermilab searches for the charged flavor violating conversion of a muon into an electron in the Coulomb field of a nucleus. The detector consists of a straw tube tracker and a CSI crystal electromagnetic calorimeter, both housed in a superconducting solenoid. Both the front-end and the digital electronics, located inside the cryostat, will be operated in vacuum under a 1 T magnetic field, having to sustain the high flux of neutrons and ionizing particles coming from the muons stopping target. These harsh experimental conditions make the design of the calorimeter waveform digitizer quite challenging. All the selected commercial devices must be tested individually and qualified for radiation hardness and operation in high magnetic field. At the moment the expected particles flux and spectra at the digitizers location are not completely simulated and we are using initial rough estimates to select the components for the first prototype. We are gaining experience in the qualification procedures using the selected components but the choice will be frozen only when dose and neutron flux simulations will be completed. The experimental results of the first qualification campaign are presented.

قيم البحث

اقرأ أيضاً

The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, $mu^- + Al to e^- +Al$. Data collection start is planned for the end of 2021. The dynamics of s uch charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates %convrate of $leq 6 times 10^{-17}$ (@ 90$%$ C.L.). R$_{mu e} = frac{mu^- + A(Z,N) to e^- +A(Z,N)}{mu^- + A(Z,N) to u_{mu} ^- +A(Z-1,N)} $ of $leq 6 times 10^{-17}$ (@ 90$%$ C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for $mu to e gamma$ decay at MEG as well as the direct searches for new physics at the LHC. The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons ($sim 10^{10} mu/$ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.
360 - N.Atanov , V.Baranov , L.Baldini 2019
The Mu2e electromagnetic calorimeter is made of two disks of un-doped parallelepiped CsI crystals readout by SiPM. There are 674 crystals in one disk and each crystal is readout by an array of two SiPM. The readout electronics is composed of two type s of modules: 1) the front-end module hosts the shaping amplifier and the high voltage linear regulator; since one front-end module is interfaced to one SiPM, a total of 2696 modules are needed for the entire calorimeter; 2) a waveform digitizer provides a further level of amplification and digitizes the SiPM signal at the sampling frequency of $200 text{M}text{Hz}$ with 12-bits ADC resolution; since one board digitizes the data received from 20 SiPMs, a total of 136 boards are needed. The readout system operational conditions are hostile: ionization dose of $20 text{krads}$, neutron flux of $10^{12} mathrm{n}(1 text{MeVeq})/text{cm}^2$, magnetic field of $1 text{T}$ and in vacuum level of $10^{-4} text{Torr}$. A description of the readout system and qualification tests is reported.
144 - N. Atanov 2018
Since the first version of the Mu2e TDR released at the beginning of 2015, the Mu2e Calorimeter system has undergone a long list of changes to arrive to its final design. These changes were primarily caused by two reasons: (i) the technology choice b etween the TDR proposed solution of BaF2 crystals readout with solar blind Avalanche Photodiodes (APDs) and the backup option of CsI crystals readout with Silicon Photomultipliers (SiPM) has been completed and (ii) the channels numbering, the mechanical system and the readout electronics were substantially modified while proceeding with engineering towards the final project. This document updates the description of the calorimeter system adding the most recent engineering drawings and tecnical progresses.
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction, through the assembly and testing of a $sim$ 1 m $times$ 1 m $times$ 0.3 m plastic scintillator based detector, is described. The plan for making a CMV detector for a smaller prototype mini-ICAL is also outlined.
68 - N. Atanov 2018
The Mu2e experiment at Fermilab searches for the charged-lepton flavour violating (CLFV) conversion of a negative muon into an electron in the field of an aluminum nucleus, with a distinctive signature of a mono-energetic electron of energy slightly below the muon rest mass (104.967 MeV). The Mu2e goal is to improve by four orders of magnitude the search sensitivity with respect to the previous experiments. Any observation of a CLFV signal will be a clear indication of new physics. The Mu2e detector is composed of a tracker, an electro- magnetic calorimeter and an external veto for cosmic rays surrounding the solenoid. The calorimeter plays an important role in providing particle identification capabilities, a fast online trigger filter, a seed for track reconstruction while working in vacuum, in the presence of 1 T axial magnetic field and in an harsh radiation environment. The calorimeter requirements are to provide a large acceptance for 100 MeV electrons and reach at these energies: (a) a time resolution better than 0.5 ns; (b) an energy resolution < 10% and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each one made of 674 undoped CsI crystals read by two large area arrays of UV-extended SiPMs. We report here the construction and test of the Module-0 prototype. The Module-0 has been exposed to an electron beam in the energy range around 100 MeV at the Beam Test Facility in Frascati. Preliminary results of timing and energy resolution at normal incidence are shown. A discussion of the technical aspects of the calorimeter engineering is also reported in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا