ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Broad Molecular lines and of Shocked Molecular Hydrogen from the Supernova Remnant G357.7+0.3: HHSMT, APEX, Spitzer and SOFIA Observations

342   0   0.0 ( 0 )
 نشر من قبل Jeonghee Rho
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Rho




اسأل ChatGPT حول البحث

We report a discovery of shocked gas from the supernova remnant (SNR) G357.7+0.3. Our millimeter and submillimeter observations reveal broad molecular lines of CO(2-1), CO(3-2), CO(4-3), 13CO (2-1) and 13CO (3-2), HCO^+ and HCN using HHSMT, Arizona 12-Meter Telescope, APEX and MOPRA Telescope. The widths of the broad lines are 15-30 kms, and the detection of such broad lines is unambiguous, dynamic evidence showing that the SNR G357.7+0.3 is interacting with molecular clouds. The broad lines appear in extended regions (>4.5x5). We also present detection of shocked H2 emission in mid-infrared but lacking ionic lines using the Spitzer IRS observations to map a few arcmin area. The H2 excitation diagram shows a best-fit with a two-temperature LTE model with the temperatures of ~200 and 660 K. We observed [C II] at 158um and high-J CO(11-10) with the GREAT on SOFIA. The GREAT spectrum of [C II], a 3 sigma detection, shows a broad line profile with a width of 15.7 km/s that is similar to those of broad CO molecular lines. The line width of [C~II] implies that ionic lines can come from a low-velocity C-shock. Comparison of H2 emission with shock models shows that a combination of two C-shock models is favored over a combination of C- and J-shocks or a single shock. We estimate the CO density, column density, and temperature using a RADEX model. The best-fit model with n(H2) = 1.7x10^{4} cm^{-3}, N(CO) = 5.6x10^{16} cm^{-2}, and T = 75 K can reproduce the observed millimeter CO brightnesses.

قيم البحث

اقرأ أيضاً

We present the detections of shocked molecular hydrogen (H2) gas in near- and mid-infrared and broad CO in millimeter from the mixed-morphology supernova remnant (SNR) HB~3 (G132.7+1.3) using Palomar WIRC, the Spitzer GLIMPSE360 and WISE surveys, and HHSMT. Our near-infrared narrow-band filter H2 2.12 micron images of HB~3 show that both Spitzer IRAC and WISE 4.6 micron emission originates from shocked H2 gas. The morphology of H2 exhibits thin filamentary structures and a large scale of interaction sites between the HB~3 and nearby molecular clouds. Half of HB~3, the southern and eastern shell of the SNR, emits H2 in a shape of a butterfly or W, indicating the interaction sites between the SNR and dense molecular clouds. Interestingly, the H2 emitting region in the southeast is also co-spatial to the interacting area between HB~3 and the H~II regions of the W3 complex, where we identified star-forming activity. We further explore the interaction between HB~3 and dense molecular clouds with detections of broad CO(3-2) and CO(2-1) molecular lines from the southern and southeastern shells along the H2 emitting region. The widths of the broad lines are 8-20 km/s; the detection of such broad lines is unambiguous, dynamic evidence of the interactions between the SNR and clouds. The CO broad lines are from two branches of the bright, southern H2 shell. We apply the Paris-Durham shock model to the CO line profiles, which infer the shock velocities of 20 - 40 km/s, relatively low densities of 10^{3-4} cm^{-3} and strong (>200 micro Gauss) magnetic fields.
We use statistical equilibrium equations to investigate the IRAC color space of shocked molecular hydrogen. The location of shocked H_2 in [3.6]-[4.5] vs [4.5]-[5.8] color is determined by the gas temperature and density of neutral atomic hydrogen. W e find that high excitation H_2 emission falls in a unique location in the color-color diagram and can unambiguously be distinguished from stellar sources. In addition to searching for outflows, we show that the IRAC data can be used to map the thermal structure of the shocked gas. We analyze archival Spitzer data of Herbig-Haro object HH 54 and create a temperature map, which is consistent with spectroscopically determined temperatures.
We present 1 to 10GHz radio continuum flux density, spectral index, polarisation and Rotation Measure (RM) images of the youngest known Galactic Supernova Remnant (SNR) G1.9+0.3, using observations from the Australia Telescope Compact Array (ATCA). W e have conducted an expansion study spanning 8 epochs between 1984 and 2017, yielding results consistent with previous expansion studies of G1.9+0.3. We find a mean radio continuum expansion rate of ($0.78 pm 0.09$) per cent year$^{-1}$ (or $sim8900$ km s$^{-1}$ at an assumed distance of 8.5 kpc), although the expansion rate varies across the SNR perimeter. In the case of the most recent epoch between 2016 and 2017, we observe faster-than-expected expansion of the northern region. We find a global spectral index for G1.9+0.3 of $-0.81pm0.02$ (76 MHz$-$10 GHz). Towards the northern region, however, the radio spectrum is observed to steepen significantly ($sim -$1). Towards the two so called (east & west) ears of G1.9+0.3, we find very different RM values of 400-600 rad m$^{2}$ and 100-200 rad m$^{2}$ respectively. The fractional polarisation of the radio continuum emission reaches (19 $pm$ 2)~per~cent, consistent with other, slightly older, SNRs such as Cas~A.
127 - H. Sano , H. Matsumura , Y. Yamane 2019
RX J0046.5$-$7308 is a shell-type supernova remnant (SNR) in the Small Magellanic Cloud (SMC). We carried out new $^{12}$CO($J$ = 1-0, 3-2) observations toward the SNR using Mopra and the Atacama Submillimeter Telescope Experiment. We found eight mol ecular clouds (A-H) along the X-ray shell of the SNR. The typical cloud size and mass are $sim$10-15 pc and $sim$1000-3000 $M_{odot}$, respectively. The X-ray shell is slightly deformed and has the brightest peak in the southwestern shell where two molecular clouds A and B are located. The four molecular clouds A, B, F, and G have high intensity ratios of $^{12}$CO($J$ = 3-2) / $^{12}$CO($J$ = 1-0) $> 1.2$, which are not attributable to any identified internal infrared sources or high-mass stars. The HI cavity and its expanding motion are found toward the SNR, which are likely created by strong stellar winds from a massive progenitor. We suggest that the molecular clouds A-D, F, and G and HI clouds within the wind-blown cavity at $V_mathrm{LSR} = 117.1$-122.5 km s$^{-1}$ are to be associated with the SNR. The X-ray spectroscopy reveals the dynamical age of $26000^{+1000}_{-2000}$ yr and the progenitor mass of $gtrsim 30$ $M_{odot}$, which is also consistent with the proposed scenario. We determine physical conditions of the giant molecular cloud LIRS 36A using the large velocity gradient analysis with archival datasets of the Atacama Large Millimeter/submillimeter Array; the kinematic temperature is $72^{+50}_{-37}$ K and the number density of molecular hydrogen is $1500^{+600}_{-300}$ cm$^{-3}$. The next generation of $gamma$-ray observations will allow us to study the pion-decay $gamma$-rays from the molecular clouds in the SMC SNR.
111 - J. Rho , J.W. Hewitt , A. Boogert 2015
We performed Herschel HIFI, PACS and SPIRE observations towards the molecular cloud interacting supernova remnant G349.7+0.2. An extremely broad emission line was detected at 557 GHz from the ground state transition 1_{10}-1_{01} of ortho-water. This water line can be separated into three velocity components with widths of 144, 27 and 4 km/s. The 144 km/s component is the broadest water line detected to date in the literature. This extremely broad line width shows importance of probing shock dynamics. PACS observations revealed 3 additional ortho-water lines, as well as numerous high-J carbon monoxide (CO) lines. No para-water lines were detected. The extremely broad water line is indicative of a high velocity shock, which is supported by the observed CO rotational diagram that was reproduced with a J-shock model with a density of 10^4 cm^{-3} and a shock velocity of 80 km/s. Two far-infrared fine-structure lines, [O~I] at 145 micron and [C~II] line at 157 micron, are also consistent with the high velocity J-shock model. The extremely broad water line could be simply from short-lived molecules that have not been destroyed in high velocity J-shocks; however, it may be from more complicated geometry such as high-velocity water bullets or a shell expanding in high velocity. We estimate the CO and H2O densities, column densities, and temperatures by comparison with RADEX and detailed shock models. Detection of Extremely Broad Water Emission from the molecular cloud interacting Supernova Remnant G349.7+0.2
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا