ﻻ يوجد ملخص باللغة العربية
RX J0046.5$-$7308 is a shell-type supernova remnant (SNR) in the Small Magellanic Cloud (SMC). We carried out new $^{12}$CO($J$ = 1-0, 3-2) observations toward the SNR using Mopra and the Atacama Submillimeter Telescope Experiment. We found eight molecular clouds (A-H) along the X-ray shell of the SNR. The typical cloud size and mass are $sim$10-15 pc and $sim$1000-3000 $M_{odot}$, respectively. The X-ray shell is slightly deformed and has the brightest peak in the southwestern shell where two molecular clouds A and B are located. The four molecular clouds A, B, F, and G have high intensity ratios of $^{12}$CO($J$ = 3-2) / $^{12}$CO($J$ = 1-0) $> 1.2$, which are not attributable to any identified internal infrared sources or high-mass stars. The HI cavity and its expanding motion are found toward the SNR, which are likely created by strong stellar winds from a massive progenitor. We suggest that the molecular clouds A-D, F, and G and HI clouds within the wind-blown cavity at $V_mathrm{LSR} = 117.1$-122.5 km s$^{-1}$ are to be associated with the SNR. The X-ray spectroscopy reveals the dynamical age of $26000^{+1000}_{-2000}$ yr and the progenitor mass of $gtrsim 30$ $M_{odot}$, which is also consistent with the proposed scenario. We determine physical conditions of the giant molecular cloud LIRS 36A using the large velocity gradient analysis with archival datasets of the Atacama Large Millimeter/submillimeter Array; the kinematic temperature is $72^{+50}_{-37}$ K and the number density of molecular hydrogen is $1500^{+600}_{-300}$ cm$^{-3}$. The next generation of $gamma$-ray observations will allow us to study the pion-decay $gamma$-rays from the molecular clouds in the SMC SNR.
We carried out $^{12}$CO($J$ = 1-0) observations of the Galactic gamma-ray supernova remnant (SNR) Kesteven 79 using the Nobeyama Radio Observatory 45 m radio telescope, which has an angular resolution of $sim20$ arcsec. We identified molecular and a
N132D is the brightest gamma-ray supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out $^{12}$CO($J$ = 1-0, 3-2) observations toward the SNR using the Atacama Large Millimeter/submillimeter Array (ALMA) and Atacama Submillimeter
N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new $^{12}$CO($J$ = 3-2) and $^{12}$CO($J$ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at $V_
We carried out new $^{12}$CO($J$ = 1-0, 3-2) observations of a N63A supernova remnant (SNR) from the LMC using ALMA and ASTE. We find three giant molecular clouds toward the northeast, east, and near the center of the SNR. Using the ALMA data, we spa
The Galactic supernova remnant (SNR) IC443 is one of the most studied core-collapse SNRs for its interaction with molecular clouds. However, the ambient molecular clouds with which IC443 is interacting have not been thoroughly studied and remain poor