ترغب بنشر مسار تعليمي؟ اضغط هنا

The incorporation site of Er in nanosized CaF 2

83   0   0.0 ( 0 )
 نشر من قبل Wilfried Blanc
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The incorporation site of Er dopants inserted at high and low concentration (respectively 5 and 0.5 mol %) in nanoparticles of CaF 2 is studied by X-ray Absorption Spectroscopy (XAS) at the Er L III edge. The experimental data are compared with the results of structural modeling based on Density Functional Theory (DFT). DFT-based molecular dynamics is also used to simulate complete theoretical EXAFS spectra of the model structures. The results is that Er substitutes for Ca in the structure and in the low concentration case the dopant ions are isolated. At high concentration the rare earth ions cluster together binding Ca vacancies.

قيم البحث

اقرأ أيضاً

We introduce numerical optimization of multi-site support functions in the linear-scaling DFT code CONQUEST. Multi-site support functions, which are linear combinations of pseudo-atomic orbitals on a target atom and those neighbours within a cutoff, have been recently proposed to reduce the number of support functions to the minimal basis while keeping the accuracy of a large basis [J. Chem. Theory Comput., 2014, 10, 4813]. The coefficients were determined by using the local filter diagonalization (LFD) method [Phys. Rev. B, 2009, 80, 205104]. We analyse the effect of numerical optimization of the coefficients produced by the LFD method. Tests on crystalline silicon, a benzene molecule and hydrated DNA systems show that the optimization improves the accuracy of the multi-site support functions with small cutoffs. It is also confirmed that the optimization guarantees the variational energy minimizations with multi-site support functions.
The electronic structure of ZnPc, from sub-monolayers to thick films, on bare and iodated Pt(111) is studied by means of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM). Our results suggest that at low coverage ZnPc lies almost parallel to the Pt(111) substrate, in a non-planar configuration induced by Zn-Pt attraction, leading to an inhomogeneous charge distribution within the molecule and charge transfer to the molecule. ZnPc does not form a complete monolayer on the Pt surface, due to a surface-mediated intermolecular repulsion. At higher coverage ZnPc adopts a tilted geometry, due to a reduced molecule-substrate interaction. Our photoemission results illustrate that ZnPc is practically decoupled from Pt, already from the second layer. Pre-deposition of iodine on Pt hinders the Zn-Pt attraction, leading to a non-distorted first layer ZnPc in contact with Pt(111)-I $left(sqrt{3}timessqrt{3}right)$ or Pt(111)-I $left(sqrt{7}timessqrt{7}right)$, and a more homogeneous charge distribution and charge transfer at the interface. On increased ZnPc thickness iodine is dissolved in the organic film where it acts as an electron acceptor dopant.
We report on some surprising optical properties of diluted nitride InGaAs_(1-y)N_y /GaAs (y<<1) pyramidal site-controlled quantum dots, grown by metalorganic vapor phase epitaxy on patterned GaAs (111)B substrates. Microphotoluminescence characteriza tions showed antibinding exciton/ biexciton behavior, a spread of exciton lifetimes in an otherwise very uniform sample, with unexpected long neutral exciton lifetimes (up to 7 ns) and a nearly zero fine structure splitting on a majority of dots.
The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are of ten tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.
X-ray amorphous manganese oxides were prepared by reduction of sodium permanganate by lithium iodide in aqueous medium (MnOx-I) and by decomposition of manganese carbonate at moderate temperature (MnOx-C). TEM showed that these materials are not amor phous, but nanostructured, with a prominent spinel substructure in MnOx-C. These materials intercalate lithium with capacities up to 200 mAh/g at first cycle (potential window 1.8-4.3 V) and 175 mAh/g at 100th cycle. Best performances for MnOx-C are obtained with cobalt doping. Potential electrochemical spectroscopy shows that the initial discharge induces a 2-phase transformation in MnOx-C phases, but not in MnOx-I ones. EXAFS and XANES confirm the participation of manganese in the redox process, with variations in local structure much smaller than in known long-range crystallized manganese oxides. X-ray absorption spectroscopy also shows that cobalt in MnOx-C is divalent and does not participate in the electrochemical reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا