ترغب بنشر مسار تعليمي؟ اضغط هنا

HI and cosmological constraints from intensity mapping, optical, and CMB surveys

167   0   0.0 ( 0 )
 نشر من قبل Alkistis Pourtsidou
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We forecast constraints on neutral hydrogen (HI) and cosmological parameters using near-term intensity mapping surveys with instruments such as BINGO, MeerKAT, and the SKA, and Stage III and IV optical galaxy surveys. If foregrounds and systematic effects can be controlled - a problem which becomes much easier in cross-correlation - these surveys will provide exquisite measurements of the HI density and bias, as well as measurements of the growth of structure, the angular diameter distance, and the Hubble rate, over a wide range of redshift. We also investigate the possibility of detecting the late time ISW effect using the Planck satellite and forthcoming intensity mapping surveys, finding that a large sky survey with Phase 1 of the SKA can achieve a near optimal detection.

قيم البحث

اقرأ أيضاً

Two of the most rapidly growing observables in cosmology and astrophysics are gravitational waves (GW) and the neutral hydrogen (HI) distribution. In this work, we investigate the cross-correlation between resolved gravitational wave detections and H I signal from intensity mapping (IM) experiments. By using a tomographic approach with angular power spectra, including all projection effects, we explore possible applications of the combination of the Einstein Telescope and the SKAO intensity mapping surveys. We focus on three main topics: textit{(i)} statistical inference of the observed redshift distribution of GWs; textit{(ii)} constraints on dynamical dark energy models as an example of cosmological studies; textit{(iii)} determination of the nature of the progenitors of merging binary black holes, distinguishing between primordial and astrophysical origin. Our results show that: textit{(i)} the GW redshift distribution can be calibrated with good accuracy at low redshifts, without any assumptions on cosmology or astrophysics, potentially providing a way to probe astrophysical and cosmological models; textit{(ii)} the constrains on the dynamical dark energy parameters are competitive with IM-only experiments, in a complementary way and potentially with less systematics; textit{(iii)} it will be possible to detect a relatively small abundance of primordial black holes within the gravitational waves from resolved mergers. Our results extend towards $mathrm{GW times IM}$ the promising field of multi-tracing cosmology and astrophysics, which has the major advantage of allowing scientific investigations in ways that would not be possible by looking at single observables separately.
We examine bounds on adiabatic and isocurvature density fluctuations from $mu$-type spectral distortions of the cosmic microwave background (CMB). Studies of such distortion are complementary to CMB measurements of the spectral index and its running, and will help to constrain these parameters on significantly smaller scales. We show that a detection on the order of $mu sim 10^{-7}$ would strongly be at odds with the standard cosmological model of a nearly scale-invariant spectrum of adiabatic perturbations. Further, we find that given the current CMB constraints on the isocurvature mode amplitude, a nearly scale-invariant isocurvature mode (common in many curvaton models) cannot produce significant $mu$-distortion. Finally, we show that future experiments will strongly constrain the amplitude of the isocurvature modes with a highly blue spectrum as predicted by certain axion models.
We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect HI clustering and weak gravitational lensing of 21cm emission in auto- and cross-correlation. Our forecasts show that high pre cision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the HI density $Omega_{rm HI}$, the HI bias $b_{rm HI}$ and the galaxy-HI correlation coefficient $r_{rm HI-g}$.
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L -band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000,{rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
384 - Alkistis Pourtsidou 2017
We explore the possibility of performing an HI intensity mapping survey with the South African MeerKAT radio telescope, which is a precursor to the Square Kilometre Array (SKA). We propose to use cross-correlations between the MeerKAT intensity mappi ng survey and optical galaxy surveys, in order to mitigate systematic effects and produce robust cosmological measurements. Our forecasts show that precise measurements of the HI signal can be made in the near future. These can be used to constrain HI and cosmological parameters across a wide range of redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا