ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys

342   0   0.0 ( 0 )
 نشر من قبل Alkistis Pourtsidou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect HI clustering and weak gravitational lensing of 21cm emission in auto- and cross-correlation. Our forecasts show that high precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the HI density $Omega_{rm HI}$, the HI bias $b_{rm HI}$ and the galaxy-HI correlation coefficient $r_{rm HI-g}$.



قيم البحث

اقرأ أيضاً

153 - Alvise Raccanelli 2011
We present forecasts for constraints on cosmological models which can be obtained by forthcoming radio continuum surveys: the wide surveys with the LOw Frequency ARray (LOFAR), Australian Square Kilometre Array Pathfinder (ASKAP) and the Westerbork O bservations of the Deep APERTIF Northern sky (WODAN). We use simulated catalogues appropriate to the planned surveys to predict measurements obtained with the source auto-correlation, the cross-correlation between radio sources and CMB maps (the Integrated Sachs-Wolfe effect), the cross-correlation of radio sources with foreground objects due to cosmic magnification, and a joint analysis together with the CMB power spectrum and supernovae. We show that near future radio surveys will bring complementary measurements to other experiments, probing different cosmological volumes, and having different systematics. Our results show that the unprecedented sky coverage of these surveys combined should provide the most significant measurement yet of the Integrated Sachs-Wolfe effect. In addition, we show that using the ISW effect will significantly tighten constraints on modified gravity parameters, while the best measurements of dark energy models will come from galaxy auto-correlation function analyses. Using the combination of EMU and WODAN to provide a full sky survey, it will be possible to measure the dark energy parameters with an uncertainty of {$sigma (w_0) = 0.05$, $sigma (w_a) = 0.12$} and the modified gravity parameters {$sigma (eta_0) = 0.10$, $sigma (mu_0) = 0.05$}, assuming Planck CMB+SN(current data) priors. Finally, we show that radio surveys would detect a primordial non-Gaussianity of $f_{rm NL}$ = 8 at 1-$sigma$ and we briefly discuss other promising probes.
We introduce the Galaxy Intensity Mapping cross-COrrelation estimator (GIMCO), which is a new tomographic estimator for the gravitational lensing potential, based on a combination of intensity mapping (IM) and galaxy number counts. The estimator can be written schematically as IM$(z_f)times$galaxy$(z_b)$ $-$ galaxy$(z_f)times$IM$(z_b)$ for a pair of distinct redshifts $(z_f,z_b)$; this combination allows to greatly reduce the contamination by density-density correlations, thus isolating the lensing signal. As an estimator constructed only from cross-correlations, it is additionally less susceptible to systematic effects. We show that the new estimator strongly suppresses cosmic variance and consequently improves the signal-to-noise ratio (SNR) for the detection of lensing, especially on linear scales and intermediate redshifts. %This makes it particularly valuable for future studies of dark energy and modified gravity. For cosmic variance dominated surveys, the SNR of our estimator is a factor 30 larger than the SNR obtained from the correlation of galaxy number counts only. Shot noise and interferometer noise reduce the SNR. For the specific example of the Dark Energy Survey (DES) cross-correlated with the Hydrogen Intensity mapping and Real time Analysis eXperiment (HIRAX), the SNR is around 4, whereas for Euclid cross-correlated with HIRAX it reaches 52. This corresponds to an improvement of a factor 4-5 compared to the SNR from DES alone. For Euclid cross-correlated with HIRAX the improvement with respect to Euclid alone strongly depends on the redshift. We find that the improvement is particularly important for redshifts below 1.6, where it reaches a factor of 5. This makes our estimator especially valuable to test dark energy and modified gravity, that are expected to leave an impact at low and intermediate redshifts.
We forecast constraints on neutral hydrogen (HI) and cosmological parameters using near-term intensity mapping surveys with instruments such as BINGO, MeerKAT, and the SKA, and Stage III and IV optical galaxy surveys. If foregrounds and systematic ef fects can be controlled - a problem which becomes much easier in cross-correlation - these surveys will provide exquisite measurements of the HI density and bias, as well as measurements of the growth of structure, the angular diameter distance, and the Hubble rate, over a wide range of redshift. We also investigate the possibility of detecting the late time ISW effect using the Planck satellite and forthcoming intensity mapping surveys, finding that a large sky survey with Phase 1 of the SKA can achieve a near optimal detection.
In a flat universe dominated by dark energy, the Integrated Sachs-Wolfe (ISW) effect can be detected as a large-angle cross-correlation between the CMB and a tracer of large scale structure. We investigate whether the inconclusive ISW signal derived from 2MASS galaxy maps can be improved upon by including photometric redshifts for the 2MASS galaxies. These redshifts are derived by matching the 2MASS data with optical catalogues generated from SuperCOSMOS scans of major photographic sky surveys. We find no significant ISW signal in this analysis; an ISW effect of the form expected in a LambdaCDM universe is only weakly preferred over no correlation, with a likelihood ratio of 1.5:1. We consider ISW detection prospects for future large scale structure surveys with fainter magnitude limits and greater survey depth; even with the best possible data, the ISW cross-correlation signal would be expected to evade detection in >~ 10% of cases.
99 - Ming Zhang , Bo Wang , Peng-Ju Wu 2021
We forecast constraints on cosmological parameters in the interacting dark energy models using the mock data generated for neutral hydrogen intensity mapping (IM) experiments. In this work, we only consider the interacting dark energy models with ene rgy transfer rate $Q=beta Hrho_{rm c}$, and take BINGO, FAST, SKA1-MID, and Tianlai as typical examples of the 21 cm IM experiments. We find that the Tianlai cylinder array will play an important role in constraining the interacting dark energy model. Assuming perfect foreground removal and calibration, and using the Tianlai-alone data, we obtain $sigma(H_0)=0.19$ km s$^{-1}$ Mpc$^{-1}$, $sigma(Omega_{rm m})=0.0033$ and $sigma(sigma_8)=0.0033$ in the I$Lambda$CDM model, which are much better than the results of Planck+optical BAO (i.e. optical galaxy surveys). However, the Tianlai-alone data cannot provide a very tight constraint on the coupling parameter $beta$ compared with Planck+optical BAO, while the Planck+Tianlai data can give a rather tight constraint of $sigma(beta)=0.00023$ due to the parameter degeneracies being well broken by the data combination. In the I$w$CDM model, we obtain $sigma(beta)=0.00079$ and $sigma(w)=0.013$ from Planck+Tianlai. In addition, we also make a detailed comparison among BINGO, FAST, SKA1-MID, and Tianlai in constraining the interacting dark energy models. We show that future 21 cm IM experiments will provide a useful tool for exploring the nature of dark energy and play a significant role in measuring the coupling between dark energy and dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا