ﻻ يوجد ملخص باللغة العربية
We analyze data from the Quarter 1-17 Data Release 24 (Q1--Q17 DR24) planet candidate catalog from NASAs Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a distinct population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly one-day orbital period. We estimate that at least 24 of the 144 systems we examined (>~17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.
Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically pass
We perform a search for dormant comets, asteroidal objects of cometary origin, in the near-Earth asteroid (NEA) population based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is ext
We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune
We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-239 (EPIC 248545986), char- acterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of thr
We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in $sim20%$ of the cases on a wide range of timescales (up to $5times10^9$ orbits) and over an unexpectedly wid