ﻻ يوجد ملخص باللغة العربية
Recently it has been argued that in Einstein gravity Anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass/energy content of the spacetime is too small, thereby restoring the stability of AdS spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.
In this work we show that Einstein gravity in four dimensions can be consistently obtained from the compactification of a generic higher curvature Lovelock theory in dimension $D=4+p$, being $pgeq1$. The compactification is performed on a direct prod
We investigate the neutral AdS black-hole solution in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity proposed in [K. Aoki, M.A. Gorji, and S. Mukohyama, Phys. Lett. B {bf 810}, 135843 (2020)] and construct the gravity duals of ($2+1$)-di
We construct the holographic superconductors away from the probe limit in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity. We observe that, both for the ground state and excited states, the critical temperature first decreases then increa
Einstein-Gauss-Bonnet theory is a string-generated gravity theory when approaching the low energy limit. By introducing the higher order curvature terms, this theory is supposed to help to solve the black hole singularity problem. In this work, we in
We find the equations of motion of membranes dual to the black holes in Einstein-Gauss-Bonnet (EGB) gravity to leading order in 1/D in the large D regime. We also find the metric solutions to the EGB equations to first subleading order in 1/D in term